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The Formal Model of Chemical Reaction Networks (CRNs). Consider a
system with n species X1;…; Xn. LetU be the set of unimolecular
reactions and B be the set of bimolecular reactions. A unimole-
cular reaction i ∈ U is defined by the index ri ∈ f1;…; ng of its
single reactant species, real-valued rate constant ki > 0, and in-
teger product coefficients for each species ci;j ≥ 0:

Xri→
ki ci;1 · X1 þ⋯þ ci;n · Xn: [S1]

A bimolecular reaction i ∈ B is defined by the indexes
ri;1; ri;2 ∈ f1;…; ng of its two reactant species, real-valued rate
constant ki > 0, and integer product coefficients for each species
ci;j ≥ 0:

Xri;1 þ Xri;2→
ki ci;1 · X1 þ⋯þ ci;n · Xn: [S2]

The concentrations ½Xj� ≥ 0 of species Xj are governed by the
reactions according to the ordinary differential equations:

_½Xj� ¼ − ∑
i∈Ujri¼j

ki½Xj� − ∑
i∈Bjri;1¼j

ki½Xj�½Xri;2 � − ∑
i∈Bjri;2¼j

ki½Xri;1 �½Xj�

þ∑
i∈U

ci;jki½Xri � þ∑
i∈B

ci;jki½Xri;1 �½Xri;2 �; [S3]

with initial concentrations ½Xj�ð0Þ ≥ 0.

Procedure for Compiling a Formal CRN to DNA-based Chemistry. In
this section we summarize the procedure for compiling an arbi-
trary CRN of unimolecular and bimolecular reactions into strand
displacement DNA-based chemistry. By assuming perfect strand
displacement reactions (e.g., no leak reactions; see main text), the
target system can be simulated with arbitrary accuracy over an
arbitrarily long period, up to a uniform scaling in time and a uni-
form scaling of the concentrations of the formal species.

Given a CRN, we first formulate the corresponding system of
reactions implementable with strand displacement chemistry by
using the modules described in the main text. Choosing para-
meter Cmax, we simulate the system, increasing Cmax as needed
to obtain a desired level of accuracy. As shown in Proof of
Convergence of the DNA Implementation to the Target CRN as
Cmax → ∞, perfect accuracy is obtained in the limit Cmax → ∞.
Then we rescale the resulting implementation into a regime with
realistic concentrations and strand displacement rate constants
while preserving the same dynamic behavior. Last, we design
DNA sequences implementing the desired strand displacement
reactions, under reasonable assumptions about DNA hybridiza-
tion and branch migration behavior.

Consider Cmax to be an accuracy parameter to be deter-
mined later. We first choose qmax, which after rescaling time will
equal the maximum rate constant achievable by a DNA strand
displacement reaction in the implementation. To set qmax note
that our construction requires qi; qsj ≤ qmax in reactions 2, 7,
and 12 of the main text (Figs. 2–4). Consequently, with buffer
cancellation, the smallest

qmax ¼ maxfmaxi∈U ki∕Cmax þ σ;maxi∈B ki þ σ;maxjð2σ − σjÞg;

where σj ¼ Σi∈Bjri;1¼jki and σ ¼ maxjfσjg. σj indicates the overall
rate constant for formal species Xj participating as the left reac-

tant in any bimolecular reaction; when translated to DNA, this
will determine how much DNA species Xj is buffered. We can
use a larger qmax but that will result in a slower implementation
after rescaling.

Let γ−1 ¼ qmaxðqmax − σÞ−1 be the buffering-scaling factor, in-
dicating the scale-up to rate constants necessary to cancel the ef-
fect of buffering of the signal species. Every unimolecular
reaction i ∈ U corresponds to the reactions:

Xri þGi→
qi Oi; [S4]

Oi þ Ti →
qmaxci;1 · X1 þ⋯þ ci;n · Xn; [S5]

where qi ¼ γ−1kiC−1
max. Every bimolecular reaction i ∈ B corre-

sponds to the reactions

Xri;1 þ Li ⇌
qi

qmax

Hi þ Bi; [S6]

Xri;2 þHi →
qmaxOi; [S7]

Oi þ Ti →
qmaxci;1 · X1 þ⋯þ ci;n · Xn; [S8]

where qi ¼ γ−1ki and Bi ¼ Bi0 if Xri;1 ¼ Xri0 ;1 and Xri;2 ¼ Xri0 ;2 .
(This equality arises because the sequence for DNA species Bi
depends only on the identity of reactants ri;1 and ri;2 and does
not contain any domain unique to reaction i.) Furthermore,
for every species Xj for which σj < σ we formulate the reactions

Xj þ LSj ⇌
qsj

qmax

HSj þ BSj; [S9]

where qsj ¼ γ−1ðσ − σjÞ. These reactions serve no purpose other
than to increase the buffering load of DNA species that are not
already maximally buffered, so that in the end all DNA species
are buffered equally. [Similar techniques are useful for balancing
networks of reactions with Michaelis–Menten kinetics (1).] The
initial concentrations of Gi, Ti, Li, Bi, LSj, and BSj are Cmax, and

the initial concentration of the signal species ½Xj�ð0Þ ¼ γ−1d½Xj�ð0Þ,
where d½Xj�ð0Þ are the initial concentrations in the target CRN.

We choose Cmax large enough to attain a desired level of ac-
curacy ascertained by numerical simulations of [S4–S9]. Once the
desired level of accuracy is achieved over a sufficiently long time
period of the behavior of the target reaction network, we choose
an appropriate time-scaling factor α and concentration-scaling
factor β to be compatible with the limitations in concentrations
and rate constants for the experimental regime. In particular, for
fastest experimentally realistic implementation of desired dy-
namics we can rescale the DNA implementation so that the lar-
gest strand displacement rate constant qmax scales to 106∕M∕s
and the largest concentration Cmax scales to 10−5 M.

We design DNA sequences on the basis of the modules illu-
strated in Figs. 2–4 (main text) as follows (see the main text
for a discussion of the design of unique sequences). For each spe-
cies Xj we use a unique species identifier and a species-specific
domain for the buffering module (black domain in Fig. 4, main
text). For each reaction we use unique reaction-specific domains
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(black domains in Figs. 2–3, main text). Strand displacement re-
actions with rate constant qmax should use a full complementary
toehold domain for maximum reaction rate. Strand displacement
rate constants q < qmax are obtained by using partially comple-
mentary toehold domains x�q (see Fig. S1) on the relevant DNA
complexes, with the rate constant predicted as in ref. 2. In the
design of Ti complexes, the product coefficients ci;j ≥ 1 are
implemented by having ci;j copies of the Xj product released
by the Ti complex.

In the experimental protocol, each DNA complex is prepared
separately by mixing the component strands, annealing, and
purifying as in ref. 3. All the auxiliary species as well as the initial
signal species are then mixed together to begin the experiment.
Fluorescent markers may be used to measure the concentration
of signal species Xj directly or indirectly (2).

We automated the above compilation procedure up to the se-
quence design step.Mathematica code that enumerates the strand
displacement reactions in our DNA implementation of a given
target CRN, scales the system into an experimentally realistic
regime, and simulates the ideal target system together with
the DNA implementation can be downloaded from http://dna.
caltech.edu/SupplementaryMaterial/DNA_for_CRNs/.

Proof of Convergence of the DNA Implementation to the Target CRN
as Cmax → ∞. In this section we use singular perturbation theory
(4, 5) to prove that our DNA implementation (with buffer can-
cellation) approaches the modeled target system with increasing
Cmax. (Without buffer cancellation, the limit Cmax → ∞ is not suf-
ficient, and the additional limit qmax → ∞ is required for arbitra-
rily high accuracy.) Intuitively, singular perturbation theory
provides a rigorous way of separating our DNA implementation
into fast and slow dynamics, with the separation increasing as
Cmax get larger. Then the slow dynamics approach the desired
target system in the limit of fast dynamics reaching instant pseu-
doequilibrium. For simplicity, we assume a fixed concentration of
reservoir species Gi, Ti, Li, Bi, LSj, and BSj equal to Cmax at all
time. This approximation is reasonable because Cmax is large (4).

The ordinary differential equations we obtain from the un-
scaled DNA implementation [S4–S9] are as follows. For every
species Xj:

_½Xj� ¼ − ∑
i∈Ujri¼j

γ−1ki½Xj� − ∑
i∈Bjri;1¼j

ðγ−1kiCmax½Xj� − qmaxCmax½Hi�Þ

− ∑
i∈Bjri;2¼j

qmax½Xj�½Hi� þ ∑
i∈U∪B

ci;jqmaxCmax½Oi�

− γ−1ðσ − σjÞCmax½Xj� þ qmaxCmax½HSj�; [S10]

and

_½HSj� ¼ γ−1ðσ − σjÞCmax½Xj� − qmaxCmax½HSj�: [S11]

For every unimolecular reaction i ∈ U:

_½Oi� ¼ γ−1ki½Xri � − qmaxCmax½Oi�: [S12]

For every bimolecular reaction i ∈ B:

_½Oi� ¼ qmax½Xri;2 �½Hi� − qmaxCmax½Oi�; [S13]

_½Hi� ¼ γ−1kiCmax½Xri;1 � − qmaxCmax½Hi� − qmax½Xri;2 �½Hi�: [S14]

By using Tikhonov’s theorem (Theorem 9.1 of ref. 5), we
will prove the following statement of convergence. Let ½Xj�ðtÞ

be solutions to the DNA implementation [S10–S14] and d½Xj�ðtÞ
be solutions of the target abstract system of chemical reactions
[S3]. We start at t ¼ 0 with ½Xj�ð0Þ ¼ γ−1d½Xj�ð0Þ and zero concen-
trations of ½HSj�, ½Oi�, and ½Hi�. Let 0 < t1 < t2 be two time points

such that d½Xj�ðtÞ is finite [some systems of chemical reactions can
achieve infinite concentrations infinite time (e.g., the system
2X1 → 3X1)] on t ∈ ½0; t2�. Then there is a C�

max such that
∀ Cmax > C�

max, at any time point t ∈ ½t1; t2�,

j½Xj�ðtÞ − d½Xj�ðtÞj ¼ Oð1∕CmaxÞ: [S15]

Note that, whereas the error of ½Xj� at a fixed time scales linearly
with 1∕Cmax, the scaling of Cmax as a function of time to achieve
some desired error is dependent on the target system.

In order to apply singular perturbation theory, we first
make the variable substitutions oi ¼ Cmax½Oi� and xj ¼ ½Xj�
þ∑i∈Bjri;1¼j

½Hi� þ ½HSj� in [S10–S14]. Then we can write our sys-
tem of differential equations in standard form for the singular
perturbation method with small parameter ϵ ¼ 1∕Cmax, and with
xj as the slow variables, and ½Xj�, ½HSj�, oi, and ½Hi� as the fast
variables:

_xj ¼ − ∑
i∈Ujri¼j

γ−1ki½Xj� − ∑
i∈Bjri;1¼j

qmax½Xri;2 �½Hi�

− ∑
i∈Bjri;2¼j

qmax½Xj�½Hi� þ ∑
i∈U∪B

ci;jqmaxoi; [S16]

ϵ _½Xj� ¼ −ϵ ∑
i∈Ujri¼j

γ−1ki½Xj� − ∑
i∈Bjri;1¼j

ðγ−1ki½Xj� − qmax½Hi�Þ

− ϵ ∑
i∈Bjri;2¼j

qmax½Xj�½Hi� þ ϵ ∑
i∈U∪B

ci;jqmaxoi

− γ−1ðσ − σjÞ½Xj� þ qmax½HSj�; [S17]

ϵ _½HSj� ¼ γ−1ðσ − σjÞ½Xj� − qmax½HSj�; [S18]

for every i ∈ B:

ϵ _oi ¼ γ−1ki½Xri � − qmaxoi; [S19]

and for every i ∈ B:

ϵ _oi ¼ qmax½Xri;2 �½Hi� − qmaxoi; [S20]

ϵ _½Hi� ¼ γ−1ki½Xri;1 � − qmax½Hi� − ϵqmax½Xri;2 �½Hi�: [S21]

The adjoined system is constructed from the differential equa-
tions for the fast variables [S17–S21] by making the substitution
ϵdð·Þ∕dt ¼ dð·Þ∕dτ with a new time variable τ, setting ϵ ¼ 0 on the
right-hand side, and fixing the slow variables xj. After simplifica-
tion we obtain the following adjoined system:

d½Xj�∕dτ ¼ qmaxxj − qmaxγ
−1½Xj�; [S22]

d½HSj�∕dτ ¼ γ−1ðσ − σjÞ½Xj� − qmax½HSj�; [S23]

for every i ∈ U:

doi∕dτ ¼ γ−1ki½Xri � − qmaxoi; [S24]
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and for every i ∈ B:

doi∕dτ ¼ qmax½Xri;2 �½Hi� − qmaxoi; [S25]

d½Hi�∕dτ ¼ γ−1ki½Xri;1 � − qmax½Hi�: [S26]

To obtain Eq. S22 note that qmax½Xj� þ∑i∈Bjri;1¼jγ
−1ki½Xj�

þγ−1ðσ − σjÞ½Xj� ¼ qmax½Xj� þ γ−1½Xj�σ ¼ qmaxγ
−1½Xj�, first by

using the definition σj ¼ ∑i∈Bjri;1¼jki and then γ−1 ¼
qmaxðqmax − σÞ−1.

In the adjoined system [S22–S26] the differential equations for
the different formal reactions i are decoupled because xj are
fixed. The adjoined system has the following steady-state values:

d½Xj� ¼ γxj; [S27]

d½HSj� ¼ q−1maxðσ − σjÞxj; [S28]

for every i ∈ U:

boi ¼ q−1maxkixri ; [S29]

for every i ∈ B:

boi ¼ γq−1maxkixri;1xri;2 ; [S30]

d½Hi� ¼ q−1maxkixri;1 : [S31]

Because the different reactions i are decoupled, it can be easily
shown that the adjoined system variables ½Xj�, ½HSj�, oi, and Hi
converge to their steady-state values exponentially quickly, uni-
formly in xj. Specifically, there exist positive constants d1 and
d2 such that for any positive xj,

j½Xj�ðτÞ − d½Xj�j ≤ j½Xj�ð0Þ − d½Xj�j · d1e−d2τ

with equivalent bounds holding for ½HSj�, oi, and ½Hi�. This con-
vergence fulfills the nontrivial precondition of Tikhonov’s theo-
rem (Theorem 9.1 of ref. 5). (The continuity preconditions and
the uniqueness of the steady state of the adjoined system, as well
as the uniqueness of the solution of the reduced system, can be
trivially established.) The reduced system can now be defined by
assuming that the fast variables are always at their steady-state
value, including in the differential equations for the slow vari-
ables. Using steady-state values [S27–S31] in [S16] results in
the reduced system for ½Xj� of the desired target form [S3]. Then
Tikhonov’s theorem implies error bounds [S15].

Additional Information about the Examples. In this section we
provide additional information on the example CRNs and their
DNA implementations from the main text. For each example, the
complete target reaction network together with the corre-
sponding DNA reactions is presented in the accompanying
Mathematica notebook available at http://dna.caltech.edu/
SupplementaryMaterial/DNA_for_CRNs/.

Lotka–Volterra oscillator. Figs. S2 and S3 expand on the Lotka—
Volterra oscillator example from the main text, Fig. 5B. By using
the domain notation of Figs. 1–4 of the main text, Fig. S2 dia-
grams the DNA molecules that must be prepared and Fig. S3 il-
lustrates the resulting strand displacement reactions.

Oregonator Limit-Cycle Oscillator.The Oregonator limit-cycle oscil-
lator is a classic simplified model of the Belousov–Zhabotinsky
reaction (6). We used unscaled rate constants corresponding
to kinetic parameters of ref. 6, equation (II), with the following
modifications: (i) kM5 was increased to 446 to speed up the os-
cillations; f was decreased to 0.994 to accommodate oscillations
in this regime (see ref. 6, figure 6). (ii) A and B (corresponding to
the reservoir concentration of BrO−

3 ) were increased to 0.065
from 0.06 M to speed up the approach to the limit cycle. The
target formal CRN, rate constants, and the reactions correspond-
ing to our DNA implementation are shown in Fig. S4.

Rössler Chaotic System. The chaotic system of Willamowsky and
Rössler is a classic example of chaos under mass-action kinetics
(7). The formal reactions and unscaled rate constants were taken
from ref. 8. The target formal CRN, rate constants, and the re-
actions corresponding to our DNA implementation are shown
in Fig. S5.

2-bit Pulse Counter Digital Circuit. Formal chemical kinetics can
emulate digital logic circuits in numerous ways (e.g., refs. 9
and 10). For this example, we constructed AND gates as shown
in Fig. 6C of the main text on the basis of a dual-rail signal re-
presentation: Every signal line corresponds to two molecular spe-
cies representing its 0 and 1 value, respectively (10). Any of the
inputs to an AND gate can be negated simply by reversing the
roles of the two signal species corresponding to this input. Every
AND gate was augmented with a dynamic threshold to sharpen
the on/off behavior of the output signal, preventing the buildup of
error (10). Such gates can be composed in arbitrary feed-forward
and feedback configurations of their electronic counterparts. Two
edge-triggered master–slave flip-flops were constructed in the
standard manner and composed to produce a ripple counter
(11). More direct chemical implementations of flip-flops and
latches are possible that do not reduce to digital logic gates
(10). The resulting chemical system consists of 182 reactions be-
tween 118 species. See the accompanying Mathematica notebook
for the complete CRN.

Chemical systems whose behavior does not depend on small
variations in reaction rates, but rather effectively on the possibi-
lity or impossibility of certain reactions, do not require buffering
modules in their DNA implementation for qualitatively correct
behavior. Digital circuits constructed as above are examples of
such systems. Omitting buffering modules may significantly sim-
plify their implementations. Further, recall that the rate constants
in the DNA implementation are scaled to ensure qi; qsj ≤ qmax,
where qi is the strand displacement rate constant controlling
the rate of reaction i and qsj is the strand displacement rate
constant controlling the buffering of species Xj. If maxjfqsjg ≫
maxifqig, the dynamics of the system may be sped up significantly
by excluding the buffering modules and requiring only that
qi ≤ qmax. The accompanying Mathematica notebook includes
two versions of the 2-bit pulse counter construction: with buffer-
ing modules (plotted in Fig. 6C of the main text) and without.

Incrementer State Machine. Uniform computation models such as
register machines constitute a contrasting computation style to
digital circuits (12). Uniform computation in chemical systems
has been explored recently, mostly for stochastic chemical ki-
netics (13, 14). The state machine example shown in Fig. 6D
of the main text is based on these constructions. The clock gov-
erning the state transitions of the machine is a generalization of
the oscillator from ref. 15) and was suggested to us by D. Dotty
(personal communication) for the mass-action implementation of
state machines. Although only 3 clock states are shown in Fig. 6D
of the main text, the implemented clock cycles through 12 states
to ensure the temporal separation of the 3 “active” states. The
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ideal CRN continues to increment the number of green peaks
until it eventually errs. The maximum count attained before er-
ring is determined by the initial concentration of the “off-cycle”
clock species. The CRN consists of 27 reactions between 25 spe-
cies. See the accompanying Mathematica notebook for the com-
plete CRN.

As with the previous example, the DNA implementation does
not require buffering modules for qualitatively correct behavior
(see accompanying Mathematica notebook).

Discussion of Experimental Considerations. Sequence design. We
require the design of a unique species identifier for each formal
species as well as one or more unique long domains for each
reaction, with sequences distinct enough to effectively eliminate
undesired reactions. There appear to be enough such sequences
for implementing even large formal CRNs: The number of long
domain sequences satisfying combinatorial criteria intended to
ensure specific strand displacement reactivity appears to grow ex-
ponentially with domain length, with over 3,000 sequences avail-
able for typical lengths (16). This sequence design problem is
made easier because in our construction only “positive” long do-
mains (e.g., 1, 2, 3, etc.) appear single-stranded, while all “nega-
tive” long domains (e.g., 1�, 2�, 3�, etc.) appear only in double-
stranded form. (The designs in ref. 17, but not those of ref. 3, also
had this property.) Thus, rather than the stringent “strong se-
quence design” criteria that every domain x binds exclusively with
x�, it is sufficient to ensure that no two positive domains can hy-
bridize in solution and that no positive domain other than x can
effect strand displacement of a x∶x� double-stranded domain.
The former criterion can be addressed by designing long domains
using a three-letter alphabet, such as just A, T, and C, a simple
technique that has proved effective in minimizing unwanted in-
teractions (17). The latter criterion can be addressed by designing
long domains such that every pair of distinct domains has a
sufficient number and distribution of mismatches; because
branch migration proceeds only if the long domain matches
(18, 19), a relatively small number of mismatches is expected
to be sufficient (16).

Whereas the number of distinct toehold sequences is limited
because these sequences must be short—and thus a large network
must necessarily reuse toeholds between species—it is straight-
forward to modify our construction so that some or all toehold
sequences are identical. Because branch migration cannot com-
plete and result in strand displacement unless the long domain
sequences match, off-pathway binding due to reused toehold se-
quences will result only in transient unproductive associations
that may slightly slow down the kinetics but will not result in
erroneous strand displacement operations.

Whereas these heuristic principles appear to be effective in
practice so far, DNA sequence design strategies remain an active
area of research (20, 21), and a more rigorous approach would be

desirable to establish the true constraints sequence design places
on strand displacement cascade scalability.

Granularity of effective rate constants. Because we set rate con-
stants by the binding strength of toehold domains, and there
are a finite number of short sequences available for toeholds,
a limited number of exact rate constants can be achieved this
way—although they are distributed over many orders of magni-
tude. However, there are many other degrees of freedom avail-
able, such as the relative concentrations of complexes Li and Bi
for bimolecular reactions. Practically, toehold domains would
likely provide an order-of-magnitude control over formal rate
constants, whereas rates would be fine-tuned by adjusting auxil-
iary species concentrations.

Network architecture optimization. Whereas we provide a system-
atic algorithm for compiling a set of chemical reactions into
DNA, in practice it may often be preferable to reduce the com-
plexity by optimizing the construction for the particular system of
interest. For example, in many cases complete sequence indepen-
dence between strands may be unnecessary, and some Ti gates
may be eliminated. Although impossible in general, sometimes
certain formal species Xj may be mapped directly to DNA com-
plexesGi rather than signal strands for a more concise implemen-
tation of some bimolecular reactions. Such optimizations will
often be desirable for practical implementation.

Leak reactions and flow reactors.Reactions involving multistranded
DNA complexes are often leaky; i.e., an output is released even if
no input is present. This leak is not yet fully understood and could
be because of poorly synthesized or assembled molecules and/or
because of unintended 3-way or 4-way branch migration path-
ways. With appropriate purification of the DNA molecules,
the rate of such leaky output production is many orders of mag-
nitude smaller than that for the desired reactions (17, 22). Even
so, if the leak process involves very high-concentration complexes
such as the auxiliary complexes in our construction, it may
strongly affect the overall reaction kinetics. It is unavoidable that
such effects will lead to more rapid signal degradation than ex-
pected from an idealized theoretical model. Still, a naive experi-
mental implementation today of our construction for the Lotka–
Volterra system would likely yield several oscillations before run-
ning down. Furthermore, running times could be extended signifi-
cantly by future advances that reduce leak with redesigned mo-
lecular motifs or compensation reactions, whereas running times
could be extended indefinitely by providing auxiliary complexes at
low concentrations in a continuous-flow stirred-tank reactor (23).
Because lower auxiliary complex concentrations would be neces-
sary in a flow reactor, much faster dynamics could also be ob-
tained by scaling up the concentrations of signal species.
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Fig. S4. Details of the implementation of the Oregonator limit-cycle oscillator shown in main text, Fig. 6A.
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Fig. S5. Details of the implementation of the Rössler chaotic system shown in main text, Fig. 6B.
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