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COMPLEXITY OF SELF-ASSEMBLED SHAPES*

DAVID SOLOVEICHIK! AND ERIK WINFREE'

Abstract. The connection between self-assembly and computation suggests that a shape can be
considered the output of a self-assembly “program,” a set of tiles that fit together to create a shape. It
seems plausible that the size of the smallest self-assembly program that builds a shape and the shape’s
descriptional (Kolmogorov) complexity should be related. We show that when using a notion of a
shape that is independent of scale, this is indeed so: in the tile assembly model, the minimal number
of distinct tile types necessary to self-assemble a shape, at some scale, can be bounded both above and
below in terms of the shape’s Kolmogorov complexity. As part of the proof, we develop a universal
constructor for this model of self-assembly that can execute an arbitrary Turing machine program
specifying how to grow a shape. Our result implies, somewhat counterintuitively, that self-assembly
of a scaled-up version of a shape often requires fewer tile types. Furthermore, the independence of
scale in self-assembly theory appears to play the same crucial role as the independence of running time
in the theory of computability. This leads to an elegant formulation of languages of shapes generated
by self-assembly. Considering functions from bit strings to shapes, we show that the running-time
complexity, with respect to Turing machines, is polynomially equivalent to the scale complexity of
the same function implemented via self-assembly by a finite set of tile types. Our results also hold
for shapes defined by Wang tiling—where there is no sense of a self-assembly process—except that
here time complexity must be measured with respect to nondeterministic Turing machines.
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1. Introduction. Self-assembly is the process by which an organized structure
can spontaneously form from simple parts. The tile assembly model [22, 21], based on
Wang tiling [20], formalizes the two-dimensional self-assembly of square units called
“tiles” using a physically plausible abstraction of crystal growth. In this model, a new
tile can adsorb to a growing complex if it binds strongly enough. Each of the four
sides of a tile has an associated bond type that interacts with a certain strength with
matching sides of other tiles. The process of self-assembly is initiated by a single seed
tile and proceeds via the sequential addition of new tiles. Confirming the physical
plausibility and relevance of the abstraction, simple self-assembling systems of tiles
have been built out of certain types of DNA molecules [23, 15, 14, 12, 10]. The
possibility of using self-assembly for nanofabrication of complex components such as
circuits has been suggested as a promising application [6].

The view that the “shape” of a self-assembled complex can be considered the
output of a computational process [2] has inspired recent interest [11, 1, 3, 9, 4]. While
it was shown through specific examples that self-assembly can be used to construct
interesting shapes and patterns, it was not known in general which shapes could be
self-assembled from a small number of tile types. Understanding the complexity of
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shapes is facilitated by an appropriate definition of shape. In our model, a tile system
generates a particular shape if it produces any scaled version of that shape (section
3). This definition may be thought to formalize the idea that a structure can be
made up of arbitrarily small pieces, but more importantly this leads to an elegant
theory that is impossible to achieve without ignoring scale. Computationally, it is
analogous to disregarding computation time and is thus more appropriate as a notion
of output of a wuniversal computation process.! Using this definition of shape, we
show (section 4) that for any shape S, if K, (S) is the minimal number of distinct tile
types necessary to self-assemble it, then K, (S)log K, (S) is within multiplicative
and additive constants (independent of S) of the shape’s Kolmogorov complexity.
This theorem is proved by developing a universal constructor [19] for self-assembly
which uses a program that outputs a fixed size shape as a list of locations to make a
scaled version of the shape (section 5). This construction, together with a new proof
technique for showing that a tile set produces a unique assembly (local determinism),
might be of independent interest. Our result ties the computation of a shape and
its self-assembly and, somewhat counterintuitively, implies that it may often require
fewer tile types to self-assemble a larger instance of a shape than a smaller instance
thereof. Another consequence of the theorem is that the minimal number of tile types
necessary to self-assemble an arbitrary scaling of a shape is uncomputable. Answering
the same question about shapes of a fixed size is computable but NP-complete [1].

The tight correspondence between computation (ignoring time) and self-assembly
(ignoring scale) suggests that complexity measures based on time (for computation)
and on scale (for self-assembly) could also be related. To establish this result, we
consider “programmable” tile sets that will grow a particular member of a family
of shapes, dependent upon input information present in an initial seed assembly.
We show that, as a function of the length of the input information, the number
of tiles present in the shape (a measure of its scale) is polynomially related to the
time required for a Turing machine (TM) to produce a representation of the same
shape. Furthermore, we discuss the relationship between complexities for Wang tilings
(in which the existence of a tiling rather than its creation by self-assembly is of
relevance) and for self-assembly, and we show that while the Kolmogorov complexity
is unchanged, the scale complexity for Wang tilings is polynomially related to the
time for nondeterministic TMs. These results are presented in section 6.

2. The tile assembly model. We present a description of the tile assembly
model based on Rothemund and Winfree [11] and Rothemund [9]. We will be working
on a Z x 7Z grid of unit square locations. The directions D = {N, E,S,W} are used
to indicate relative positions in the grid. Formally, they are functions Z x Z — Z x Z:
N(Zv.]) = (17.7 + 1)7 E('ij) = (’LJ’_ 17j)a S(Z’j) = (7".] - 1)’ and W(’ij) = (’L - 17j)'
The inverse directions are defined naturally: N71(i,j) = S(i,5), etc. Let ¥ be a
set of bond types. A tile type [l is a 4-tuple (on,0p,05,0w) € X* indicating the
associated bond types on the north, east, south, and west sides. Note that tile types
are oriented; thus a rotated version of a tile type is considered to be a different
tile type. A special bond type null represents the lack of an interaction, and the

IThe production of a shape of a fixed size cannot be considered the output of a universal com-
putation process. Whether a universal process will output a given shape is an undecidable question,
whereas this can be determined by exhaustive enumeration in the tile assembly model. Thus it
is clear that the connection between Kolmogorov complexity and the number of tile types we ob-
tain in our main result (section 4) cannot be achieved for fixed-scale shapes: this would violate the
uncomputability of Kolmogorov complexity.
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special tile type empty = (null, null, null, null) represents an empty space. If T is
a set of tile types, a tile is a pair (@, (4,7)) € T x Z? indicating that location (i, )
contains the tile type . Given the tile t = (@, (¢,7)), type(t) = [ and pos(t) = (i, 7).
Further, bondp ({l), where D € D, is the bond type of the respective side of @, and
bondp(t) = bondp(type(t)). A configuration is a set of nonempty tiles, with types
from T, such that there is no more than one tile in every location (i, j) € Z x Z. For
any configuration A, we write A(Z,j) to indicate the tile at location (7, ) or the tile
(empty, (i, 7)) if there is no tile in A at this location.

A strength function g : ¥ X ¥ — Z, where null € X, defines the interactions
between adjacent tiles: we say that a tile ¢; interacts with its neighbor t5 with strength
[(t1,t2) = g(o,0’), where o is the bond type of tile ¢; that is adjacent to the bond
type o’ of tile t5.2 The null bond has a zero interaction strength (i.e., Vo € X,
g(null,o) = 0). We say that a strength function is diagonal if it is nonzero only for
g(o,0’) such that ¢ = ¢’. Unless otherwise noted, a tile system is assumed to have
a diagonal strength function. Our constructions use diagonal strength functions with
the range {0,1,2}. We say that a bond type ¢ has strength g(o,0). Two tiles are
bonded if they interact with a positive strength. For a configuration A, we use the
notation I'3(t) = I'(t, A(D(pos(t)))).? For L € D we define T' (t) = >, TH(¢).

A tile system T is a quadruple (T, ts, g, 7) where T is a finite set of nonempty tile
types, t, is a special seed tile* with type(t,) € T, g is a strength function, and 7 is the
threshold parameter. Self-assembly is defined by a relation between configurations.
Suppose A and B are two configurations, and ¢ is a tile such that A = B except at
pos(t) and A(pos(t)) = null but B(pos(t)) = t. Then we write A —x B if ['4(t) > 7.
This means that a tile can be added to a configuration if and only if the sum of its
interaction strengths with its neighbors reaches or exceeds 7. The relation —7 is the
reflexive transitive closure of —.

Whereas a configuration can be any arrangement of tiles (not necessarily con-
nected), we are interested in the subclass of configurations that can result from a
self-assembly process. Formally, the tile system and the relation —7. define the par-
tially ordered set of assemblies, Prod(T) = {A such that (s.t.) {ts} —% A}, and the
set of terminal assemblies, Term(T) = {A € Prod(T) and AB # A s.t. A —% B}.
A tile system T wuniquely produces A if VB € Prod(T), B —4% A (which implies
Term(T) = {A}).

An assembly sequence Aof Tisa sequence of pairs (A, t,), where Ag = {to} =
{ts} and A,,_1 —1 A, = A,—1 U{t,}. Here we will exclusively consider finite
assembly sequences. If a finite assembly sequence Ais implicit, A indicates the last
assembly in the sequence.

The tile systems used in our constructions have 7 = 2 with the strength function
ranging over {0,1,2}. Tt is known that 7 = 1 systems with strength function ranging
over {0,1} are rather limited [11, 9]. In our drawings, the bond type o may be

2More formally,

g(bond -1 (t1),bondp(t2)) if 3D € D s.t. pos(t1) = D(pos(t2)),
F(tl,tg) = .
0 otherwise.
3Note that t # A(pos(t)) is a valid choice. In that case Fg(t) tells us how ¢ would bind if it were
in A.
4While having a single seed tile is appropriate to the complexity discussion of the main part of
this paper, it is useful to consider whole seed assemblies (made up of tiles not necessarily in T') when
considering tile systems capable of producing multiple shapes (section 6.5).
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illustrated by a combination of shading, various graphics, and symbols. Strength-2
bond types will always contain two dots in their representation. All markings must
match for two bond types to be considered identical. For example, the north bond
type of the following tile has strength 2, and the others have strength 1.

The constructions in this paper do not use strength-0 bond types (other than in
empty tiles); thus, there is no confusion between strength-1 and strength-0 bond
types. Strength-0 interactions due to mismatches between adjacent tiles do occur in
our constructions.

2.1. Guaranteeing unique production. When describing tile systems that
produce a desired assembly, we would like an easy method for showing that this as-
sembly is uniquely produced. While it might be easy to find an assembly sequence
that leads to a particular assembly, there might be many other assembly sequences
that lead elsewhere. Here we present a property of an assembly sequence that guar-
antees that the assembly it produces is indeed the uniquely produced assembly of the
tile system.

Rothemund [9] describes the deterministic-RC property of an assembly that guar-
antees its unique production and is very easy to check. However, this property is
satisfied only by convex (in the sense of polyaminos) assemblies and thus cannot be
directly invoked when making arbitrary shapes.® A more general poly-time test for
unique production was also shown by Rothemund [9], but it can be difficult to prove
that a particular assembly would satisfy this test. On the other hand, the notion
of locally deterministic assembly sequences introduced here is easily checkable and
sufficient for the constructions in this paper.

DEFINITION 2.1. For an assembly sequence A we define the following sets of
directions for Vi, j € Z, letting t = A(i,j):

o inputsides®(t) = {D € D s.t. t =t, and T3 (t,) > 0},
o propsides”(t) = {D € D s.t. D' € inputsides™ (A(D(pos(t))))}, and

o termsides” (t) = D — inputsides” (t) — propsides™ (t).

Intuitively, inputsides are the sides with which the tile initially binds in the process
of self-assembly; these sides determine its identity. propsides propagate information
by being the sides to which neighboring tiles bind. termsides are sides that do neither.
Note that by definition empty tiles have four termsides.

DEFINITION 2.2. A finite assembly sequence A of T = (T, t,,g,7) is called locally
deterministic if Vi, j € Z, letting t = A(i, j),

(1) T4 (t) <7, and

inputsidesd (t)

(2) Yt s.t. type(t') € T, pos(t') = pos(t) but type(t') # type(t),

A /
FD—pmpsidesj(t) (t ) <T.

We allow the possibility of < in property (1) in order to account for the seed
and empty tiles. Intuitively, the first property says that when a new tile binds to

5 Additionally, assemblies satisfying the deterministic-RC property must have no strength-0 inter-
actions between neighboring nonempty tiles. However, such interactions are used in our construction.
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a growing assembly, it binds “just barely.” The second property says that nothing
can grow from nonpropagating sides except “as desired.” We say that T is locally
deterministic if there exists a locally deterministic assembly sequence for it.

It is clear that if 4 is a locally deterministic assembly sequence of T, then A €
Term(T). Otherwise, the empty tile in the position where a new (nonempty) tile can
be added to A would violate the second property. However, the existence of a locally
deterministic assembly sequence leads to the following much stronger conclusion.

THEOREM 2.3. If there exists a locally deterministic assembly sequence A of T,
then T uniquely produces A.

Proof. See Appendix A. 0

3. Arbitrarily scaled shapes and their complexity. In this section, we in-
troduce the model for the output of the self-assembly process used in this paper. Let
S be a finite set of locations on Z x Z. The adjacency graph G(S) is the graph on
S defined by the adjacency relation where two locations are considered adjacent if
they are directly north/south or east/west of one another. We say that S is a coor-
dinated shape if G(S) is connected.® The coordinated shape of assembly A is the set
Sa = {pos(t) s.t. t € A}. Note that S4 is a coordinated shape because A constitutes
a single connected component.

For any set of locations S, and any c € Z*, we define a c-scaling of S as

S =A{0,4) st (Li/c]; [i/c]) € S}

Geometrically, this represents a “magnification” of S by a factor c. Note that a scaling
of a coordinated shape is itself a coordinated shape: every node of G(S) gets mapped
to a c2-node connected subgraph of G(S¢), and the relative connectivity of the sub-
graphs is the same as the connectivity of the nodes of G(S). A parallel argument
shows that if S¢ is a coordinated shape, then so is S. We say that coordinated shapes
Sy and S, are scale-equivalent if S§ = S¢ for some ¢, d € ZT. Two coordinated shapes
are translation-equivalent if they can be made identical by translation. We write
Sy = Sy if S¢ is translation-equivalent to S§ for some ¢,d € Z*t. Scale-equivalence,
translation-equivalence, and & are equivalence relations (see Appendix B). This de-
fines the equivalence classes of coordinated shapes under 2. The equivalence class
containing S is denoted S and we refer to it as the shape S. We say that S is the shape
of assembly A if S4 € S. The view of computation performed by the self-assembly
process espoused here is the production of a shape as the “output” of the self-assembly
process, with the understanding that the scale of the shape is irrelevant. Physically,
this view may be appropriate to the extent that a physical object can be constructed
from arbitrarily small pieces. However, the primary reason for this view is that there
does not seem to be a comprehensive theory of complexity of coordinated shapes akin
to the theory we develop here for shapes ignoring scale.

Having defined the notion of shapes, we turn to their descriptional complexity.
As usual, the Kolmogorov complexity of a binary string x with respect to a universal
TM U is Ky (z) = min {|p| s.t. U(p) = x}. (See the exposition of Li and Vitanyi [13]
for an in-depth discussion of Kolmogorov complexity.) Let us fix some “standard”
universal machine U. We call the Kolmogorov complexity of a coordinated shape S

6We say “coordinated” to make explicit that a fixed coordinate system is used. We reserve the
unqualified term “shape” for when we ignore scale and translation.
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to be the size of the smallest program outputting it as a list of locations:”*®

K(S) =min{|s| s.t. U(s) = (5)}.
The Kolmogorov complexity of a shape S is

K(S) = min{|s| s.t. U(s) = (S) for some S € S}

We define the tile-complezity of a coordinated shape S and shape S, respectively,
as

K, (S) = min{

n s.t. 3 a tile system T of n tile types that uniquely produces
assembly A and S is the coordinated shape of A ’

(5,) . n s.t. Ja tile system T of n tile types that uniquely produces
- assembly A and S is the shape of A

4. Relating tile-complexity and Kolmogorov complexity. The essential
result of this paper is the description of the relationship between the Kolmogorov
complexity of any shape and the number of tile types necessary to self-assemble it.

THEOREM 4.1. There exist constants ag, by, a1,b1 such that for any shape S,

(4.1) aoK(S) + by < K, (S)log K, (S) < a1 K(S) + by.

Note that since any tile system of n tile types can be described by O(nlogn)
bits, the theorem implies that there is a way to construct a tiling system such that
asymptotically at least a constant fraction of these bits is used to “describe” the shape
rather than any other aspect of the tiling system.

Proof of Theorem 4.1. To see that agK(S) + by < K,,(S)log K,,(S), realize
that there exists a constant size program pg, that, given a binary description of
a tile system, simulates its self-assembly, making arbitrary choices where multiple
tile additions are possible. If the self-assembly process terminates, ps, outputs the
coordinated shape of the terminal assembly as the binary encoding of the list of
locations in it. Any tile system T of n tile types with any diagonal strength function
and any threshold 7 can be represented? by a string dr of 4n[log4n] + 16n bits: for
each tile type, the first of which is assumed to be the seed, specify the bond types
on its four sides. There are no more than 4n bond types. In addition, for each tile
type [l specify for which of the 16 subsets L C D, Y g(bondD()) >7. IfTisa

tile system uniquely producing an assembly that has shape S, then K (S ) < |psad].
The left inequality in (4.1) follows with the multiplicative constant ag = 1/4 — ¢ for
arbitrary € > 0.

We prove the right inequality in (4.1) by developing a construction (section 5)
showing how, for any program s s.t. U(s) = (S), we can build a tile system T of

"Note that K(S) is within an additive constant of Ky (x) where x is some other effective descrip-
tion of S, such as a computable characteristic function or a matrix. Since our results are asymptotic,
they are independent of the specific representation choice. One might also consider invoking a two-
dimensional computing machine, but it is not fundamentally different for the same reason.

8Notation (-) indicates some standard binary encoding of the object(s) in the brackets. In the
case of coordinated shapes, it means an explicit binary encoding of the set of locations. Integers,
tuples, or other data structures are similarly given simple explicit encodings.

9Note that this representation could also be used in the case that negative bond strengths are
allowed so long as the strength function is diagonal.
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15105‘13| + b tile types, where b is a constant and p is a string consisting of a fixed

program pg, and s (i.e., |p| = |psp| + |s]), that uniquely produces an assembly whose
shape is S. Program py, and constant b are both independent of S. The right
inequality in (4.1) follows with the multiplicative constant a; = 15 + ¢ for arbitrary
e > 0. O

Our result can be used to show that the tile-complexity of shapes is uncomputable.
COROLLARY 4.2. K, of shapes is uncomputable. In other words, the following
language is undecidable: L = {(I,n) s.t. | = (S) for some S and K_,(S) < n}.

Language L should be contrasted with L = {(I,n) s.t. [ = (S) and K,,(S) < n}
which is decidable (but hard to compute in the sense of NP-completeness [1]).

Proof of Corollary 4.2. We essentially parallel the proof that Kolmogorov
complexity is uncomputable. If L were decidable, then we could make a program

that computes K,,(S) and subsequently uses Theorem 4.1 to compute an effective

lower bound for K(S). Then we can construct a program p that, given n, outputs
some coordinated shape S (as a list of locations) such that K(S) > n by enumerating
shapes and testing with the lower bound, which we know must eventually exceed n.
But this results in a contradiction since p(n) is a program outputting S € S and so

K(S) < |p| + [logn]. But for large enough n, |p| + [logn] < n. 0
5. The programmable block construction.

5.1. Overview. The uniquely produced terminal assembly A of our tile system
logically will consist of square “blocks” of ¢ x ¢ tiles. There will be one block for each
location in S. Consider the coordinated shape in Figure 5.1(a). An example assembly
A is graphically represented in Figure 5.1(b), where each square represents a block
containing ¢? tiles. Self-assembly initiates in the seed block, which contains the seed
tile, and proceeds according to the arrows illustrated between blocks. Thus if there
is an arrow from one block to another, it indicates that the growth of the second
block (a growth block) is initiated from the first. A terminated arrow indicates that
the block does not initiate the self-assembly of an adjacent block in that direction—
in fact, the boundary between such blocks consists of strength-0 interactions (i.e.,
mismatches). Figure 5.1(c) describes our nomenclature: an arrow comes into a block
on its input side, arrows exit on propagating output sides, and terminated arrows
indicate terminating output sides. The seed block has four output sides, which can
be either propagating or terminating. Each growth block has one input and three
output sides, which are also either propagating or terminating. The overall pattern
of bonding of the finished target assembly A is as follows. Tiles on terminal output
sides are not bound to the tiles on the adjacent terminal output side (i.e., there is
no bonding along the dotted lines in Figure 5.8(a)), but all other neighboring tiles
are bound. We will program the growth such that terminating output sides abut
only other terminating output sides or empty tiles, and input sides exclusively abut
propagating output sides, and vice versa.

The input/output connections of the blocks form a spanning tree rooted at the
seed block. During the progress of the self-assembly of the seed block, a computational
process determines the input/output relationships of the rest of the blocks in the
assembly. This information is propagated from block to block during self-assembly
(along the arrows in Figure 5.1(b)) and describes the shape of the assembly. By
following the instructions each growth block receives in its input, the block decides
where to start the growth of the next block and what information to pass to it in
turn. The scaling factor ¢ is set by the size of the seed block. The computation in
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F1G. 5.1. Forming a shape out of blocks: (a) A coordinated shape S. (b) An assembly composed
of ¢ X ¢ blocks that grow according to transmitted instructions such that the shape of the final assembly
is S (not drawn to scale). Arrows indicate information flow and order of assembly. The seed
block and the circled growth block are schematically expanded in Figure 5.2. (c) The nomenclature
describing the types of block sides.
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F1a. 5.2. Internal structure of a growth block (a) and seed block (b).

the seed block ensures that c is large enough so that there is enough space to do the
necessary computation within the other blocks.

We present a general construction that represents a Turing-universal way of guid-
ing large-scale self-assembly of blocks based on an input program p. In the following
section, we describe the architecture of seed and growth blocks on which arbitrary
programs can be executed. In section 5.3 we describe how program p can be encoded
using few tile types. In section 5.4 we discuss the programming of p that is required
to grow the blocks in the form of a specific shape and bound the scaling factor ¢. In
section 5.5 we demonstrate that the target assembly A is uniquely produced.

5.2. Architecture of the blocks.

5.2.1. Growth blocks. There are four types of growth blocks depending upon
where the input side is, which will be labeled by T, —, |, or «+—. The internal structure
of a T growth block is schematically illustrated in Figure 5.2(a). The other three types
of growth block are rotated versions of the T block. The specific tile types used for a
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T growth block are shown in Figure 5.3, and a simple example is presented in Figure
5.4. The first part is a TM simulation, which is based on [18, 11]. The machine
simulated is a universal TM that takes its input from the propagating output side
of the previous block. This TM has an output alphabet {0, 1,5’}3 and an input
alphabet {(000), (111)} on a two-way tape (with A used as the blank symbol). The
output of the simulation, as 3-tuples, is propagated until the diagonal. The diagonal
propagates each member of the 3-tuples crossing it to one of the three output sides, like
a prism separating the colors of the spectrum. This allows the single TM simulation
to produce three separate strings targeted for the three output sides. The “S” symbol
in the output of the TM simulation is propagated like the other symbols. However, it
acts in a special way when it crosses the boundary tiles at the three output sides of
the block, where it starts a new block. The output sides that receive the “S” symbol
become propagating output sides, and the output sides that do not receive it become
terminating output sides. In this way, the TM simulation decides which among the
three output sides will become propagating output sides, and what information they
should contain, by outputting appropriate tuples. Subsequent blocks will use this
information as a program, as discussed in section 5.4.

5.2.2. Seed block. The internal structure of the seed block is schematically
shown in Figure 5.2(b). It consists of a small square containing all the information
pertaining to the shape to be built (the seed frame), a larger square in which this
information is unpacked into usable form, and finally four TM simulations whose
computations determine the size of the seed block and the information transmitted
to the growth blocks. For simplicity we first present a construction without the
unpacking process (the simple seed block) and then explain the unpacking process
separately and show how it can be used to create the full construction. The tile
types used for the simple seed block are presented in Figure 5.5, and an example
is given in Figure 5.6. While growth blocks contain a single TM simulation that
outputs a different string to each of the three output sides, the seed block contains
four identical TM simulations that output different strings to each of the four output
sides. This is possible because the border tile types transmit information selectively:
the computation in the seed block is performed using 4-tuples as the alphabet in a
manner similar to that of the growth blocks, but on each side of the seed block only
one of the elements of the 4-tuple traverses the border. As with growth blocks, if the
transmitted symbol is “S,” the outside edge initiates the assembly of the adjoining
block. The point of having four identical TM simulations is to ensure that the seed
block is square: while a growth block uses the length of its input side to set the length
of its output sides (via the diagonal), the seed block does not have any input sides.
(Remember that it is the seed block that sets the size of all the blocks.)

The initiation of the TM simulations in the seed block is done by tile types
encoding the program p that guides the block construction. The natural approach
to providing this input is using four rows (one for each TM) of unique tiles encoding
one bit per tile, as illustrated in Figures 5.5 and 5.6. However, this method does not
result in an asymptotically optimal encoding.

5.3. The unpacking process. To encode bits much more effectively we follow
Adleman et al. [3] and encode on the order of logn/loglogn bits per tile, where n is
the length of the input. This representation is then unpacked into a one-bit-per-tile
representation used by the TM simulation. The method of Adleman et al. requires
O(n/logn) tiles to encode n bits, leading to the asymptotically optimal result of
Theorem 4.1.
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a) Borders and basic info propagating tiles:
¥z € {0,1, A} we add:

north-west: north: north-east:

B B
. z||A S
B B
input-west: input: input-east:

T .
B B B B B
B z Bt

=

Vertical and horizontal information propaga-
tion below the bottom-right/top-left diagonal:

=

vz,y € {0,1, 5, A}

and above this diagonal: ¥z,y € {0,1,5, A}:

b) Tile types for the diagonal:

TM section diagonal:

Initiation of TM diagonal (to bind to the north-east corner tile)
and to delay the upward continuation of the diagonal by one
(through the é bond):

The prism diagonal, Yw,z,y, z € {0,1, 5, A}*:

In the row where the Turing machine halts, the A symbol is
propagated from the left. This initiates the “prism” diagonal
with the following tile:

Termination of the prism diagonal (to bind to the north-west
corner tile):

¢) TM Simulation tile types:

For every symbol s in {0,1,5,A)}®
the following tile types propagate the e ﬂi

tape contents: 8

For every symbol s and every state 9% a5
q we add the following “read” tile |6 R glld R ¢
types: 8 s
If in state ¢, reading symbol s, U +

writes &', goes to state ¢', and moves A )
the head right, we add the following wq

“write” tile type: oliy
To start IV in state go we add the fol- r
lowing “start” tile type, which places B B
the head at the point at which the

“S" symbol initiates the block: s

>
For every symbol s and every state q e o
we add the following “copy” tile type: c

qs
If in state g, reading symbel s, U ,

writes s, goes to state ¢, and moves e
the head left, we add the following [I W

“write” tile type: LY
If in state g, reading symbol s, U halts s’

writing s’ then we add the following |\ g A
“halting” tile type: g5

Fic. 5.3. Growth block 1 tile types. All bond types in which a block type symbol is omitted
have the block type symbol “1” to prevent inadvertent incorporation of tiles from a different block
type. We assume that in bond types above, a single symbol x € {0,1, S, \} is the same as the tuplet
(zzx). The tile types for other growth block types are formed by 90°,180°, and 270° rotations of the
tile types of the 1 block where the block type symbols {1, |,«,—} are replaced by a corresponding

BT

=

90°,180°, and 270° rotation of the symbol: i.c., B! 2 (1 growth block) = £ B (— growth block).

BT
Looking at the border tile types, note that external sides
type symbols compatible with the tiles on an input side

Bl
of tiles on output sides of blocks have block
of a block. However, tiles on output sides

cannot bind to the tiles on an adjacent output side because of mismatching block type symbols.
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Terminating output side

BT | AT o7 o7 T T T T T T T XT | BT \
B BB BB BB BB BB BB BB BB BB BB BB BB B
o[Blel X 0 0 by A by A A A A A B
X 0 X X X X X X X X B
A
B
B
1
- w
B o
B ¢ B 8
5|8, q0) a2
B ¢ B =
EaN @
B e
3 |3 2.
z Al 8
=} &
: e
8 AR
2 B o
g NE:
o= —>E
g B | = J
& SEE
A
B £
B 4
A )
o
w
B @
A =
BH >Z
B 2.
A 2
B A 0 | qox | A A A A A A A A | Bl =y
B X 0 doX A P by P by Py Y Py =
B BB BB BB BB BB BB BB BB BB BB BB BB B =
Bl Al 9 Lol Al A1 Al A, A AL AL AL LBl J
BT | AT O [7"ST [ AT [AT T"AT T A1 M A T AT T AT BT
Propagating output side of adjacent block 1
L -

Fic. 5.4. A trivial example of a | growth block. Here, the TM makes one state transition and
halts. All bond types in which a block type symbol is omitted have the block type symbol “1.” We
assume that in bond types above, a single symbol x € {0,1, S, A} is the same as the tuplet (zzx).
The natural assembly sequence to consider is adding tiles row by row from the south side (in which
a new row is started by the strength-2 bond).
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a) Borders and half-diagonals:

B wT B
The borders: X g B B lg x B
Yw,z,y,z € {0,1,A}: B e B ¥l
¢ B ST B ¢| wxSz
S B B 5/l B
B Szyz B ?l.Sl,
BT B B
Corner tile types: £ BllB Bl|B % B B
B B Bl B
2 1 Y 3 3
The four half-diagonals to separate the TM sim- |y el le M e A el
ulations and augment the TM tape with blanks: e & 2 A
b) Seed frame for program p.
WL o [
TM seed frame: for every symbol p;: MQ Pi i P @
| e | Lol
If p; is “U" then the corresponding bond type is strength 2, starting the
TM simulation with the head positioned at that point reading A.
b=
Corners of the seed frame: let i, = |p|: u A "él

To £ill in the middle: 9

c¢) TM Simulation tile types (north only):

For every symbol s in {0,1,5,A}*
the following tile types propagate the |& e
tape contents: 8

For every symbol s and every state

g we add the following “read” tile |e g qlld R €

types: s s

If in state g, reading symbol s, U T If in state q, reading s}vmbol s, U T
writes s', goes to state g¢', and moves 8 o writes s, goes to state ¢, and moves e Y
the head left, we add the following |7 w the head right, we add the following Wq
“write” tile type: P LI “write” tile type: LIS
To start U in state go we add the fol- ‘%X‘ If in state g, reading symbol s, U halts wT
lowing “start” tile type, which places | o writing s’ = (wzyz) then we add the By B
the head at the point at which the following “halting” tile type, which

“S" symbol initiates the block: oo also starts the border: TLLIN

F1G. 5.5. Seed block tile types without unpacking. All bond types in which a block type symbol is
omitted have the block type symbol “¢” to prevent inadvertent incorporation of tiles from a different
block type. We assume that in bond types above, a single symbol x € {0,1, S, A} is the same as the
tuplet (zxxzx). Note that as with output sides of growth blocks, the external sides of seed block border
tiles have block type symbols compatible with the tiles on an input side of a growth block. The three
other TM simulations consist of tile types that are rotated versions of the morth TM simulation
shown. The halting tile types propagate one of the members of the tuple on which the TM halts,
analogous to the border tile types. The bond types of TM tile types have a symbol from D which
indicates which simulation they belong to (omitted above).



1556 DAVID SOLOVEICHIK AND ERIK WINFREE

BT T XT T 0T 0T T T XT BT
B BB BB BB BBHBB BB BB BB BB B
B by A A 1 4910,1 0108 | A by A B
B Y X X 10 ] 0105 [ X X X B
A AN ele ele ele Railma W ele ele ele AN A
B e A A 0 J0Ng | A A e B
B X X 0 qoX X X B
P A \ ele ele ele ele ele A \ A
B e A 0] o U o A e B
B X $ 0 & DY B
AN Nt 22 1|1 olo A A A
B 0, 20 o ¢ 2 B
B ¢ B ¢ 0 [Z) 2] 2 s B
X 5150108 U oo oo oo o 4 7O
B ¢ B el | © Q 1 Y B
B 1 © () T o B
L HY 0 o o oo U 01051,
B ? 2.1 o %) o *? B
B 2 @ %] 0 B
A\ A 0|0 11 22 A A A
B A LUl 0 A B
B € €
Py A \ el e A A\ A
B A pY B
B 2 2 B
A AN ¢ e A\ A
B by - o A B
B Y X X [ 0105 [ ‘q10 X X X B
B BB BB BB BB BBHBB BB BB BB 3B
Bl Al Al Al 0l 1] Al Al Al Bl

Fia. 5.6. A simple seed block without unpacking showing the north TM simulation and the
selective transmission of information through the borders. As shown, only the west side is a prop-
agating output side; the other three sides are terminating output sides. All bond types in which a
block type symbol is omitted have the block type symbol “Y2.” We assume that in bond types above,
a single symbol x € {0,1, S, A} is the same as the tuplet (xxzxz). The natural assembly sequence
to consider is growing the seed frame first band and then adding tiles row by row from the center
(where a new row is started by the strength-2 bond).
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Our way of encoding information is based on Adleman et al. [3] but modified
to work in a 7 = 2 tile system (with strength function ranging over {0,1,2}) and
to fit our construction in its geometry. We express a length-n binary string using a
concatenation of [n/k] binary substrings of length k, padding with 0’s if necessary.'®
We choose k such that it is the least integer satisfying % < 2F. Clearly, 2% < IOQg”n.
See Figure 5.7 for the tile types used in the unpacking for the north TM simulation
and for a simple unpacking example (which for the sake of illustration uses k = 4).

Let us consider the number of tile types used to encode and unpack the n-bit

input string for a single TM simulation (i.e., north). There are 2[n/k| < Z[ﬁw =

| unique tile types in each seed row. This implies that there exists a

2 gn=togtogn
constant h such that 2[n/k] < l(fg"n +h for all n. We need at most 28 +2F=1 ... +4 <
2k+1 “extract bit” tile types and 2F~14-2F=2 ... 44 < 2% “copy remainder” tile types.
To initiate the unpacking of new substrings we need 2% tile types. To keep on copying
substrings that are not yet unpacked we need 2(2%) tile types. The quantity of the
other tile types is independent of n, k. Thus, in total, to unpack the n-bit input string
for a single TM simulation we need no more than l(fg"n +h 2k ok 4 ok 4 9(9k) <
15logn + O(1) tile types. Since there are 4 TM simulations in the seed block, we need
60 logn + O(1) tile types to encode and unpack the n-bit input string.

If the seed block requires only one propagating output side, then a reduced con-
struction using fewer tile types can be used: only one side of the seed frame is specified,
and only one direction of unpacking tiles are used. A constant number of additional
tile types are used to fill out the remaining three sides of the square. These additional
tile types must perform two functions. First, they must properly extend the diagonal
on either side of the unpacking and TM simulation regions. In the absence of the
other three unpacking and TM simulation processes, this requires adding strength-2
bonds that allow the diagonal to grow to the next layer. Second, the rest of the square
must be filled in to the correct size. This can be accomplished by adding tiles that
extend one diagonal to the other side of the seed frame (using the same logic as a
construction in [11]). Altogether, a seed block with only one propagating output side
requires only 15% + O(1) tile types. We will see in the next section that this is
sufficient for growing any shape.

5.4. Programming blocks and the value of the scaling factor c. In order
for our tile system to produce some assembly whose shape is S, instructions encoded
in p must guide the construction of the blocks by deciding on which side of which
block a new block begins to grow and what is encoded on the edge of each block. For
our purposes, we take p = pg(s) (i.e., psp takes s as input), where s is a program
that outputs the list of locations in the shape S. pg, runs s to obtain this list and
plans out a spanning tree t over these locations (it can just do a depth-first search)
starting from some arbitrarily chosen location that will correspond to the seed block.!!
The information passed along the arrows in Figure 5.1(b) is pgy(t, (4, 7)), which is
the concatenation of a program pg, to be executed within each growth block, and
an encoding of the tree ¢t and the location (i, j) of the block into which the arrow is
heading. When executed, pg(t, (¢, 7)) evaluates to a 3-tuple encoding of pg(t, D(4, j))
together with symbol “S” for each propagating output side D. Thus, each growth

10We can assume that our universal TM U treats trailing 0’s just as \’s.

11We can opt to always choose a leaf, in which case the seed block requires only one propagating
output side. In this case the multiplicative factor a1 is 15+ ¢, although the tile set used will depend
upon the direction of growth from the leaf.
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a) Unpacking tile types for the north side of the seed frame:

We use n/k coding tiles in the input row, each encoding a binary
substring (w;) of length k. These tiles are interspersed with buffer
tiles holding the symbol “»”. Y0 > i > k/n — 1:

The last tile of the seed row has symbol “U" which indicates the end of the input

string.
To initiate the unpacking of new substrings: ¥z € {0,1}*!, b € z
{011}: bx
b
The following “extract bit” tile types perform the actual unpacking: |e ko
vie{1,...,k—1},vz € {0,1}7,b € {0,1}: l
oy
The following “copy remainder” tile types pass the remaining bits to |z *
the next extraction: Vj € {2,...,k—1},¥z € {0,1}7: -

b b
To copy a single bit in the last step of the unpacking of a substring | le e
and after unpacking every bit: b € {0,1}: "
3 T
These tile types keep on copying substrings that are not yet being |« x| *
unpacked: ¥z € {0,1}*: - ,
: R appn : * u 90 A
Finally, the following tile types propagate the symbol “U", which
indicates the end of the input string, and initiate the TM simulation [* vl A mm A
once the unpacking process finishes: U e U e

b) North unpacking example:

TM sin

0 1 1 0 0 A
3 eje Eje Eje Ele A

0 1 1 0 (1] e

0 T T 0 0
(=3 eje eje eje cle

0 1 1 0 0

0 1 1 0 0
e €le €le 0j0 EE 101j101 %= vju Al

0 1 10 o * 0101 * u e

0 1 10 » 0101 b u
e ele 1010  ** 0101j0101 =** ur Al

ol 10, * 0101 * U e
* 0101 ® U

=+ 01010101 =|* vl M
0101 * u e

101 * 124
%) (%]
|30110

Fic. 5.7. The unpacking for the north side of the seed frame. (a) The tile types used. (b)
An ezample showing the unpacking of the string 01100101 if k = 4 for a seed block with up to four
propagating output sides. Note that the unpacking process can be inserted immediately prior to the
TM simulation without modifying other tile types. The inset shows the internal structure of a seed
block with only one propagating output side.

apm indana Tupeunusa

sing output side
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block passes pgi(t, D(i,7)) to its Dth propagating output side as directed by ¢. Note
that program pg, in the seed tile must also run long enough to ensure that c is large
enough that the computation in the growth blocks has enough space to finish without
running into the sides of the block or into the diagonal. Nevertheless, the scaling
factor ¢ is dominated by the building of ¢ in the seed block, as the computation in
the growth blocks takes only poly(]S]).'2 Since the building of ¢ is dominated by the
running time of s, we have ¢ = poly(time(s)).

5.5. Uniqueness of the terminal assembly. By Theorem 2.3 it is enough to
demonstrate a locally deterministic assembly sequence ending in our target terminal
assembly to be assured that this terminal assembly is uniquely produced. Consider
the assembly sequence A in which the assembly is constructed block by block such that
every block is finished before the next one is started and each block is constructed by
the natural assembly sequence described in the captions of Figures 5.4 and 5.6. It is
enough to confirm that in this natural assembly sequence every tile addition satisfies
the definition of local determinism (Definition 2.2). It is easy to confirm that every
tile not adjacent to a terminal output side of a block indeed satisfies these conditions.
Other than on a terminal output side of a block (and on null tiles) there are no term-
sides: every side is either an inputside or a propside. In our construction, each new tile
binds through either a single strength-2 bond or two strength-1 bonds (thus condition
1 is satisfied since 7 = 2) such that no other tile type can bind through these inputsides
(condition 2 is satisfied if the tile has no termsides). Note that inadvertent binding
of a tile type from a different block type is prevented by the block type symbols.

Now let us consider termsides around the terminal output sides of blocks (Figure
5.8(a)). Here block type symbols come to the rescue again and prevent inadvertent
binding. Let ¢t € A be a tile with a termside (¢ can be null). We claim that V¢’ s.t.

type(t') € T and pos(t') = pos(t), if Ffermsidesg(t) (t') > 0, then I‘g_pmpsidesgm ) <

7 = 2. In other words, if ¢ binds on a termside of t, then it cannot bind strongly
enough to violate local determinism, implying we can ignore termsides. Figure 5.8(a)
shows in dotted lines the termsides that could potentially be involved in bonding.
These termsides cannot have a strength-2 bond because symbol “S” is not propagated
to terminal output sides of blocks. Thus ¢’ binding only on a single termside of t is
not enough. Can ¢’ bind on two termsides of t? To do so, it must be in a corner
between two blocks, binding two terminal output sides of different blocks. But to
bind in this way would require ¢ to bond to the block type symbol pattern'® shown
in Figure 5.8(b) (or its rotation), which none of the tile types in our tile system can
do. Can ' bind on one termside and one inputside of t? Say the termside of t that
t’ binds on is the west side (Figure 5.8(c)). The tile to the west of ¢ must be on the
east terminal output side of a block, and thus it has symbol “—” on its east side. So
t’ must have “—” on the west, and depending on the type of block ¢ is in, one of the
other block type symbols as shown in Figure 5.8(c). But again none of the tile types
in our tile system has the necessary block type symbol pattern.

12Note that fewer than n rows are necessary to unpack a string of length n (section 5.3). Since
we can presume that pg, reads its entire input and the universal TM needs to read the entire input
program to execute it, the number of rows required for the unpacking process can be ignored with
respect to the asymptotics of the scaling factor c.

13The block type symbol pattern of a tile type consists of the block type symbols among its four

T
bond types. For instance, the tile type A; TAT has block type symbol pattern T X Tl If two bond
3

types do not have matching block type symbols, then obviously they cannot bind.
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Fic. 5.8. (a) The target terminal assembly with the dotted lines indicating the edges that have
termsides with nonnull bonds. (b) The block type symbols of adjacent tiles on two termsides of t
(west and south in this case). (c) The block type symbols of adjacent tiles on a termside (west side
in this case) and an inputside of t. If t is in the seed block or «— growth block, then the north, east,
and south sides may be the inputsides. Ift is in a T block, then the east and south sides may be the
inputsides. If t is in a | block, then the north and east sides may be the inputsides.

6. Generalizations of shape complexity. In this work we have established
both upper and lower bounds relating the descriptional complexity of a shape to the
number of tile types needed to self-assemble the shape within the standard tile assem-
bly model. The relationship is dependent upon a particular definition of shape that
ignores its size. Disregarding scale in self-assembly appears to play a role similar to
that of disregarding time in theories of computability and decidability. Those theories
earned their universal standing by being shown to be identical for all “reasonable”
models of computation. To what extent do our results depend on the particular model
of self-assembly? Can one define a complexity theory for families of shapes in which
the absolute scale is the critical resource being measured? In this section we discuss
the generality and limitations of our result.

6.1. Optimizing the main result (section 4). Since the Kolmogorov com-
plexity of a string depends on the universal TM chosen, the complexity community
adopted a notion of additive equivalence, where additive constants are ignored. How-
ever, Theorem 4.1 includes multiplicative constants as well, which are not customarily
discounted. It might be possible to use a more clever method of unpacking (section
5.2) and a seed block construction that reduces the multiplicative constant a; of The-
orem 4.1. Correspondingly, there might be a more efficient way to encode any tile
system than that described in the proof of the theorem, and thereby increase ag.

Recall that s is the program for U producing the target coordinated shape S
as a list of locations. For cases where our results are of interest, the scaling factor
¢ = poly(time(s)) is extremely large since |S| is presumably enormous and s must
output every location in S. The program s’ that, given (i, j), outputs 0/1, indicating
whether S contains that location, may run much faster than s for large shapes. Can
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our construction be adapted to use s’ in each block rather than s in the seed block
to obtain smaller scale? The problem with doing this directly is that the scale of the
blocks, which sets the maximum allowed running time of computation in each block,
must be set in the seed block. As a result, there must be some computable time bound
on s’ that is given to the seed block.

For any particular shape, there must be a range of achievable parameters: the
number of tile types and the scaling factor. We know that we can obtain scaling factor
1 by using a unique tile type for each location. On the other extreme is our block
construction which allows us to obtain an asymptotically optimal number of tile types
at the expense of an enormous scaling factor. Presumably there is a gradual tradeoff
between the number of tile types and the scale that can be achieved by a range of tile
systems. The characterization of this tradeoff is a topic for future study.

In this vein, an important open problem remains of determining lower bounds on
the scales of shapes produced by tile systems with an asymptotically optimal number
of tile types. As an initial result of this kind, consider the following proof that an
arbitrarily large scaling factor may need to be used if we stick to asymptotically
optimal tile systems. Consider the coordinated shape that is a rectangle of width m
and height 1. Clearly, it is an instance of the following shape S: a long, thin rectangle
that is m times as long as it is high. According to Aggarwal et al. [4], the number of
tile types required to self-assemble a long, thin rectangle that is n tiles long and k tiles
high is Q(Lk/k) This implies that to produce any coordinated instance of S at scale

1/e
¢ requires |T| = Q(%) tile types. Now we can define what an asymptotically

optimal tile system means for us by choosing a1, b; and requiring that the number of
tile types |T'| satisfies |T|log |T| < a1 K(S) + by. Since K(S) = O(logm), it follows
through simple algebra that no matter what a1, b1 are, for large enough m, the scaling

factor ¢ needs to get arbitrarily large to avoid a contradiction.

6.2. Strength functions. In most previous works on self-assembly, as in this
work, strength functions are restricted by the following properties: (1) the effect that
one tile has on another is equal to the effect that the other has on the first (i.e.,
g is symmetric: g(o,0’) = g(o’,0)); (2) the lack of an interaction is normalized to
zero (i.e., g(o,null) = 0); (3) there are no “adverse” interactions counteracting other
interactions (i.e., g is nonnegative); (4) only sides with matching bond types interact
(i.e., g is diagonal: g(o,0') =0 if o # o).

Properties 1 and 2 seem natural enough. Our results are independent of property
3 because the encoding used for the lower bound of Theorem 4.1 is valid for strength
functions taking on negative values. Property 4, which reflects the roots of the tile
assembly model in the Wang tiling model, is essential for the quantitative relationship
expressed in Theorem 4.1: recent work by Aggarwal et al. [4] shows that permitting
nondiagonal strength functions allows information to be encoded more compactly.
Indeed, if property 4 is relaxed, then replacing our unpacking process with the method
of encoding used in that work and using the lower bound of Aggarwal et al. leads to
the following form of Theorem 4.1: assuming the maximum threshold 7 is bounded
by a constant, there exist constants ag, by, a1, b, such that for any shape S ,

~\2 ~
aoK (5) +bo < (K2(S)) < aK(8) +bu,

where K¢ is the tile-complexity when nondiagonal strength functions are allowed. It
is an open question whether the constant bound on 7 can be relaxed.
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6.3. Wang tiling versus self-assembly of shapes. Suppose one is solely con-
cerned with the existence of a configuration in which all sides match, and not with
the process of assembly. This is the view of classical tiling theory [7]. Since finite tile
sets can enforce uncomputable tilings of the plane [8, 16], one might expect greater
computational power when the existence, rather than production, of a tiling is used
to specify shapes. In this section we develop the notion of shapes in the Wang tile
model [20] and show that results almost identical to the tile assembly model hold.
One conclusion of this analysis is that making a shape “practically constructible”
(i.e., in the sense of the tile assembly model) does not necessitate an increase in
tile-complexity.

We translate the classic notion of the origin-restricted Wang tiling problem'* as
follows. An (origin-restricted) Wang tiling system is a pair (T,ts), where T is a set
of tile types and ts is a seed tile with type(ts) € T. A configuration A is a valid
tiling if all sides match and it contains the seed tile. Formally, A is a wvalid tiling
if V(i,j) € 2%, D € D, (1) type(A(i,5)) € T, (2) ts € A, and (3) bondp(A(i,j)) =
bondp-1(A(D(i, 5))).

Since valid tilings are infinite objects, how can they define finite coordinated
shapes? For tile sets containing the empty tile type, we can define shapes analogously
to the tile assembly model. However, we cannot simply define the coordinated shape
of a valid tiling to be the set of locations of nonempty tiles. For one thing, the set
of nonempty tiles can be disconnected, unlike in self-assembly where any produced
assembly is a single connected component. So we take the coordinated shape S4 of
a valid tiling A to be the smallest region of nonempty tiles containing ¢y that can
be extended to infinity by empty tiles. Formally, S4 is the coordinated shape of the
smallest subset of A that is a valid tiling containing ts. If Sy4 is finite, then it is
the coordinated shape of valid tiling A.*® Shape S is the shape of a valid tiling A if
Sy € S’

Produced assemblies of a tile system (T, ts, g, 7) are not necessarily valid tilings of
Wang tiling system (7, ¢s) because the tile assembly model allows mismatching sides.
Further, valid tilings of (T',ts) are not necessarily produced assemblies of (T ts, g, 7).
Even if one considers only valid tilings that are connected components, there might not
be any sequence of legal tile additions that assembles these configurations. Nonethe-
less, if a tile system uniquely produces a valid tiling A, then all valid tilings of the cor-
responding Wang tile system agree with A and have the same coordinated shape as A.

LEMMA 6.1. If empty € T and the tile system T = (T ts, g, T) uniquely produces
assembly A such that A is a valid tiling of the Wang tiling system (T,ts), then for
all valid tilings A’, it holds that (1) V(i,j) € Z2, type(A(i,j)) # empty = A'(i,j) =
A/(i,j), and (2) Sa = 854.

Proof. Consider an assembly sequence Aof T ending in assembly A and let A’ be
a valid tiling of (7', ts). Suppose t,, is the first tile added in this sequence such that
t' = A'(pos(tn)) # tn. Since A’ is a valid tiling, ¢’ must match on all sides, including

inputsidesA(tn). But this implies that two different tiles can be added in the same
location in ff, which means that A is not uniquely produced. This implies part (1) of
the lemma. Now, to be a valid tiling, all exposed sides of assembly A must be null.
Thus if A’ and A agree on all places where A is nonempty, then S4» = S4, and part
(2) of the lemma follows. d

14The unrestricted Wang tile model does not have a seed tile [20, 5, 18].
155 4 can be finite only if empty € T because otherwise no configuration containing an empty tile
can be a valid tiling.
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Define the tile-complexity K, of a shape S in the origin-restricted Wang tiling
model as the minimal number of tile types in a Wang tiling system with the property
that a valid tiling exists and there is a coordinated shape S € S such that for every
valid tiling A, S4 = S.

THEOREM 6.1. There exist constants ag, by, a1,b1 such that for any shape S,

aoK (S) + by < Kyt (S)1og Kyt (S) < a1 K(S) + by.

Proof sketch. The left inequality follows in a manner similar to the proof of
Theorem 4.1. Suppose every valid tiling of our Wang tile system has coordinated shape
S. Any Wang tiling system of n tile types can be represented using O(nlogn) bits.
Making use of this information as input, we can use a constant-size program to find,
through exhaustive search, the smallest region containing ¢ surrounded by null bond
types in some valid tiling. Thus, O(nlogn) bits are enough to compute an instance of
S. To prove the right inequality, our original block construction almost works, except
that there are mismatches between a terminal output side of a block and the abutting
terminal output side of the adjacent block or the surrounding empty tiles (i.e., along
the dotted lines in Figure 5.8(a)). Consequently, the original construction does not
yield a valid tiling. Nonetheless, a minor variant of our construction overcomes this
problem. Instead of relying on mismatching bond type symbols to prevent inadvertent
binding to terminal output sides of blocks, we can add an explicit capping layer that
covers the terminal output sides with null bond types but propagates information
through propagating output sides. This way, the terminal output sides of blocks
are covered by null bond types and match the terminal output sides of the adjacent
block and empty tiles. These modifications can be made preserving local determinism,
which, by Lemma 6.1, establishes that the coordinated shape of any valid tiling is an
instance of S. a

There may still be differences in the computational power between Wang tilings
and self-assembly processes. For example, consider the smallest Wang tiling system
and the smallest self-assembly tile system that produce instances of S. The instance
produced by the Wang tiling system might be much smaller than the instance pro-
duced by self-assembly. Likewise, there might be coordinated shapes that can be
produced with significantly fewer tile types by a Wang tiling system than by a self-
assembly system.

Keep in mind that the definition we use for saying when a Wang tiling system pro-
duces a shape was chosen as a natural parallel to the definition used for self-assembly,
but alternative definitions may highlight other interesting phenomena specific to Wang
tilings. For example, one might partition tiles into two subsets, “solution” and “sub-
stance” tiles, and declare shapes to be connected components of substance tiles within
valid tilings. In such tilings—reminiscent of “vicinal water” in chemistry—the solu-
tion potentially can have a significant (even computational) influence that restricts
possible shapes of the substance, and hence the size of produced shapes need not be
so large as to contain the full computation required to specify the shape.

6.4. Sets of shapes. Any coordinated shape S can be trivially produced by a
self-assembly tile system or by a Wang tiling of |S| tile types. Interesting behavior
occurs only when the number of tile types is somehow restricted and the system is
forced to perform some nontrivial computation to produce a shape. Previously in this
paper, we restricted the number of tile types in the sense that we ask what is the
minimal number of tile types that can produce a given shape. We saw that ignoring
scale in this setting allows for an elegant theory. In the following two sections the
restriction on the number of tile types is provided by the infinity of shapes they must
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be able to produce. Here we will see as well that ignoring scale allows for an elegant
theory.

Adleman [2] asks, “What are the ‘assemblable [sic] shapes’ - (analogous to what
are the ‘computable functions’)?” While this is still an open question for coordinated
shapes, our definition of a shape ignoring scale and translation leads to an elegant
answer. A set of binary strings L is a language of shapes if it consists of (standard
binary) encodings of lists of locations that are coordinated shapes in some set of
shapes: L = {(S)s.t. S € Sand S € R} for some set of shapes R. Note that
every instance of every shape in R is in this language. The language of shapes L is
recursively enumerable if there exists a TM that halts upon receiving (S) € L and
does not halt otherwise. We say a tile system T produces the language of shapes L
if L = {(S)s.t. S € Su forsome A € Term(T)}. We may want L to be uniquely
produced in the sense that the A € Term(T) is unique for each shape. Further,
to prevent infinite spurious growth we may also require T to satisfy the following
noncancerous property: VB € Prod(T), 3A € Term(T) s.t. B —% A. The following
lemma is valid whether or not these restrictions are made.

LEMMA 6.2. A language of shapes L is recursively enumerable if and only if it is
(uniquely) produced by a (noncancerous) tile system.

Proof sketch. First of all, for any tile system T we can make a TM that, given
a coordinated shape S as a list of locations, starts simulating all possible assembly
sequences of T and halts if and only if it finds a terminal assembly that has shape
S. Therefore, if L is produced by a tile system, L is recursively enumerable. In
the other direction, if L is recursively enumerable, then there is a program p that,
given n, outputs the nth shape from L (in some order) without repetitions. Our
programmable block construction can be modified to execute a nondeterministic uni-
versal TM in the seed block by having multiple possible state transitions. We make a
program that nondeterministically guesses n, feeds it to p, and proceeds to build the
returned shape. Note that since every computation path terminates, this tile system
is noncancerous, and since p enumerates without repetitions, the language of shapes
is uniquely produced. |

Note that the above lemma does not hold for languages of coordinated shapes,
defined analogously. Many simple recursively enumerable languages of coordinated
shapes cannot be produced by any tile system. For example, consider the language of
equilateral width-1 crosses centered at (0,0). No tile system produces this language.
Scale-equivalence is crucial because it allows arbitrary amounts of information to be
passed between different parts of a shape; otherwise, the amount of information is
limited by the width of a shape.

The same lemma can be attained for the Wang tiling model in an analogous
manner using the construction from section 6.3. Let us say a Wang tiling system
(T, ts) produces the language of shapes LifL = {(S8) st. S e S4 for some valid tiling
A of (T,ts)}. Analogously to tile systems, we may require the unique production
property that there is exactly one such A for each shape. Likewise, corresponding to
the noncancerous property of tile systems, we may also require the tiling system to
have the noncancerous property that every valid tiling has a coordinated shape (i.e., is
finite). Again, the following lemma is true whether or not these restrictions are made.

LEMMA 6.3. A language of shapes L is recursively enumerable if and only if it is
(uniquely) produced by a (noncancerous) Wang tiling system.

6.5. Scale complexity of shape functions. Expanding upon the notion of a
shape being the output of a universal computation process as mentioned in the in-
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troduction, let us consider tile systems effectively computing a function from binary
strings to shapes. The universal “programmable block” constructor presented in sec-
tion 5 may be taken as an example of such a tile set if the full seed block is considered
as an initial seed assembly rather than as part of the tile set per se. In this case, the
remaining tile set is of constant size and will construct an arbitrary algorithmic shape
when presented with a seed assembly containing the relevant program. The universal
constructor tile set’s efficiency, then, can be measured in terms of the scale of the
produced shape. Similarly, other “programmable” tile sets may produce a limited set
of shapes, but potentially with greater efficiency. (Such tile sets can be thought to
produce a language of shapes (section 6.4) such that the choice of the produced shape
can be deterministically specified.) For tile systems outputting shapes in this manner,
we can show that the total number of tiles (not tile types) in the produced shape is
closely connected to the time complexity of the corresponding function from binary
strings to shapes in terms of TMs. The equivalent connection can be made between
nondeterministic TMs and the size of valid tilings in the Wang tiling model.

Let f be a function from binary strings to shapes. We say that a TM M computes
this function if for all z, f(z) = S < 35 € S s.t. M(x) = (S). The standard notion of
time complexity applies: f € TIM Epp(t(n)) if there is a TM computing it running
in time bounded by t(n), where n is the size of the input. In section 5.2.2 we saw how
binary input can be provided to a tile system via a seed frame wherein all four sides
of a square present the bit string. Let us apply this convention here.!® Extending
the notion of the seed in self-assembly to the entire seed frame and using this as the
input for a computation [17], we say a tile system computes f if the following holds:
[starting with the seed frame encoding x the tile system uniquely produces an assem-
bly of shape S] if and only if f(z) = S. We say that f € TILESg(t(n)) if there is a
tile system computing it and the size of coordinated shapes produced (in terms of the
number of nonempty locations) for inputs of size n is upper bounded by ¢(n). Similar
definitions can be made for nondeterministic TMs (NDTMs) and Wang tiling systems.
We say that an NDTM N computes f if the following holds: [every computation path
of N on input z ending in an accept state (as opposed to a reject state) outputs (S)
for some S € S ] if and only if f(z) = S. For NDTMs, f € TIM Expra(t(n)) if there
is an NDTM computing f such that every computation path halts after ¢(n) steps.
Extending the notion of the seed for Wang tilings to the entire seed frame as well,
we say a Wang tiling system computes f if all valid tilings containing the seed frame
have a coordinated shape and this coordinated shape is the same for all such valid
tilings, and it is an instance of the shape f(z). We say that f € TILESwr(t(n)) if
there is a tiling system computing it and the size of coordinated shapes produced for
inputs of size n is upper bounded by #(n).

THEOREM 6.4.

(a) If f € TILESsA(t(n)), then f € TIM E7p(O(t(n)?)).

(b) If f € TIMErpr(t(n)), then f € TILESgsA(O(t(n)?)).

( ) Iff S TILESWT( ( )) then f S TIMENDTM( (t(n) ))

(d) If f € TIMENprar(t(n)), then f € TILESw7(0O(t(n)?)).

Proof sketch. (a) Let T be a tile system computing f such that the total number of
tiles used on an input of size n is t(n). A TM with a two-dimensional tape can simulate
the self-assembly process of T with an input of size n in O(t(n)?) time: for each of
the ¢(n) tile additions, it needs to search O(t(n)) locations for the next addition. This

16 Any other similar method would do. For the purposes of this section, it does not matter whether
we use the one-bit-per-tile encoding or the encoding requiring unpacking (section 5.3).
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two-dimensional TM can be simulated by a regular TM with a quadratic slowdown.”

(b) Let M be a deterministic TM that computes f and runs in time ¢(n). Instead
of simulating a universal TM in the block construction, we simulate a TM M’ which
runs M on input x encoded in the seed frame and acts as program pg, in section
5.4. Then the scale of each block is O(t(n)), which implies that each block consists
of O(t(n)?) tiles. Now the total number of blocks cannot be more than the running
time of M since M outputs every location that corresponds to a block. Thus the total
number of tiles is O(t(n)?3).

(¢) An argument similar to (a) applies to the Wang tiling system with the following
exception. A Wang tiling system can simulate an NDTM and still be able to output a
unique shape. The tiling system can be designed such that if a reject state is reached,
the tiling cannot be a valid tiling. For example, the tile representing the reject state
can have a bond type that no other tile matches. Thus all valid tilings correspond to
accepting computations.

(d) Simulation of Wang tiling systems can, in turn, be done by an NDTM as
follows. Suppose every valid tiling of our Wang tile system has coordinated shape
S. The simulating NDTM acts in a manner similar to that of the TM simulating
self-assembly above, except that every time two or more different tiles can be added
in the same location, it nondeterministically chooses one. If the NDTM finds a region
containing the seed frame surrounded by null bond types, it outputs the shape of
the smallest such region and enters an accept state. Otherwise, at some point no
compatible tile can be added, and the NDTM enters a reject state. The running time
of accepting computations is O(t(n)?) via the same argument as for (b). d

If, as is widely believed, NDTMs can compute some functions in polynomial time
that require exponential time on a TM, then it follows that there exist functions from
binary strings to shapes that can be computed much more efficiently by Wang tiling
systems than by self-assembly, where efficiency is defined in terms of the size of the
coordinated shape produced.

The above relationship between TIM E and T'ILFES may not be the tightest pos-
sible. As an alternative approach, very small-scale shapes can be created as Wang
tilings by using an NDTM that recognizes tuples (i, j, ), rather than one that gener-
ates the full shape. This will often yield a compact construction. As a simple example,
this approach can be applied to generating circles with radius = at scale O(n?), where
n = O(logz). It remains an open question how efficiently circles can be generated by
self-assembly.

6.6. Other uses of programmable growth. The programmable block con-
struction is a general way of guiding the large-scale growth of the self-assembly process
and may have applications beyond those explored so far. For instance, instead of con-
structing shapes, the block construction can be used to simulate other tile systems in
a scaled manner using fewer tile types. It is easy to reprogram it to simulate, using
few tile types, a large deterministic 7 = 1 tile system for which a short algorithmic
description of the tile set exists. We expect that a slightly extended version of the

17The rectangular region of the two-dimensional tape previously visited by the two-dimensional
head (the arena) is represented row by row on a one-dimensional tape separated by special markers.
The current position of the two-dimensional head is also represented by a special marker. If the
arena is [ X m, a single move of the two-dimensional machines which does not escape the current
arena requires at most O(mQ) steps, while a move that escapes it in the worst case requires an extra
O(ml?) steps to increase the arena size. We have m,l = O(¢(n)), and the number of times the arena
has to be expanded is at most O(t(n)).
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block construction can also be used to provide compact tile sets that simulate other
7 = 2 tile systems that have short algorithmic descriptions.

To self-assemble a circuit, it may be that the shape of the produced complex is
not the correct notion. Rather one may consider finite patterns, where each location
in a shape is “colored” (e.g., resistor, transistor, wire). Further, assemblies that can
grow arbitrarily large may be related to infinite patterns. What is the natural way to
define the self-assembly complexity of such patterns? Do our results (section 4) still
hold?

Appendix A. Local determinism guarantees unique production: Proof
of Theorem 2.3.

LEMMA A.1. If A is a locally deterministic assembly sequence of T, then for
every assembly sequence A’ of T and for every tile t' =t! added in A, the following
conditions hold, where t = A(pos(t')):

(i) inputsides™ (t') = inputsides™ (t).

(i) ¢ =t.

Proof. Suppose t' = ¢/, is the first tile added that fails to satisfy one of the above
conditions. Consider any D € inputsides™ (t'). Tile tp = A’(D(pos(t'))) must have
been added before t/ in A’ and so D~ & inputsides™ (tp) = inputsides”™(tp). This
implies D ¢ propsidesA(t) and thus,

(A1) mputsidesff/ )N pmpsz‘des‘g(t) = 0.

Now, VD, F’g; (') < T4 (#') because A/, has no more tiles than A and except at pos(t)
they all agree. Equation (A.1) implies
r4 (t)y<r4 o (t').

inputsidesA’ () — " D—propsides®

Therefore,

Al / A
r- - t)y<T
inputsidesA’ () ( ) - D-

® ).

propsioles“Y

So by property (2) of Definition 2.2, no tile of type # type(t) could have been suffi-

ciently bound here by inputsides” (') and thus ¢’ = ¢. Therefore, ' cannot fail the
second condition (ii).

Now, suppose t’ fails the first condition (i). Because of property (1) of Defi-
nition 2.2, this can happen only if 3D € inputsides” " — inputsidesA(t’). Since
D¢ inputsidesA(t’), tp must have been added after ¢ in A. So since ¢p binds ¢/,
D' e inputsz'desA(tD), and so D € propsidesA(t). But by (A.1) this is impossible.
Thus we conclude A’ C A. O

Lemma A.1 directly implies that if there exists a locally deterministic assembly
sequence A of T, then VA’ € Prod(T),A’ C A. Theorem 2.3 immediately follows:
if there exists a locally deterministic assembly sequence A of T, then T uniquely
produces A.

Since local determinism is a property of the inputsides classification of tiles in a
terminal assembly, Lemma A.1 also implies the following corollary.

COROLLARY A.2. If there exists a locally deterministic assembly sequence A of
T, then every assembly sequence ending in A is locally deterministic.
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Appendix B. Scale-equivalence and “=2” are equivalence relations. Trans-
lation-equivalence is clearly an equivalence relation. Let us write Sy s S if the two
coordinated shapes are translation-equivalent.

LeEMMA B.1. If S = S¢ and Sy = Sk, then S = S,

Proof.  S(i,j) = So(li/d]), [i/d]) = Swm(Lli/d|/k],[Li/d}/k]) = Sm(li/dk],
li/dk]). O

LEMMA B.2. If Sy £ S,, then S¢ £ S¢.

Proof. S§(i,j) = So(li/dl, [j/d]) = Si(li/d] + Ai, [j/d] + Aj) = Si(| =52,
| H987 1) = S¢(i + dAi, j + dAj). O

To show that scale-equivalence is an equivalence relation, the only nontrivial
property is transitivity. Suppose S§ = S¢ and S¢ = S5 for some ¢, ¢, d,d’ € Z*.
(8SH4 = (8§)? = S§¢d by Lemma B.1. Thus, S¢4 = (S5)4 = (S5)?, and by
Lemma B.1, S§¢ = S5'%.

To show that “=” is an equivalence relation, again only transitivity is nontrivial.
Suppose Sy = S; and S; = Sy. In other words, S§ z S¢ and S¢ i S5’ for some
¢, d,d € Z*. By Lemma B.2, ()% £ (59)% and (S¢)¢ £ (S5)%. Then by
Lemma B.1, Sgd/ z Sd'd and S¢'d t:T S¢'d. which implies Sgd/ z S5'd by the transitivity
of translation-equivalence. In other words, Sy = S5.
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