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Abstract. DNA nanotechnology is an emerging field which utilizes the
unique structural properties of nucleic acids in order to build nanoscale
devices, such as logic gates, motors, walkers, and algorithmic structures.
Predicting the structure and interactions of a DNA device requires effec-
tive modeling of both the thermodynamics and the kinetics of the DNA
strands within the system. The kinetics of a set of DNA strands can be
modeled as a continuous time Markov process through the state space of
all secondary structures. The primary means of exploring the kinetics of
a DNA system is by simulating trajectories through the state space and
aggregating data over many such trajectories. We expand on previous
work by extending the thermodynamics and kinetics models to handle
multiple strands in a fixed volume, in a way that is consistent with previ-
ous models. We developed data structures and algorithms that allow us
to take advantage of local properties of secondary structure, improving
the efficiency of the simulator so that we can handle reasonably large sys-
tems. Finally, we illustrate the simulator’s analysis methods on a simple
case study.

1 Introduction

Dynamic DNA nanotechnology [29] is an emerging field that utilizes the unique
structural properties of nucleic acids in order to build nanoscale devices, such as
conformational motors [27], hybridization catalysts [21], logic gates [14,19], ana-
log circuits [2,26,30], triggered self-assembly [6,26], polymerization motors [22],
molecular walkers [13,20], and molecular robots [9,12] that operate even in the
absence of enzymes and other sophisticated non-nucleic-acid chemistry. These
devices are built out of DNA strands whose sequences have been carefully
designed in order to control their secondary structure—the hydrogen bonding
state of the bases within the strand (called “base-pairing”). This base-pairing
is used to not only control the physical structure of the device, but also to
enable specific interactions between different components of the system, such
as allowing, for example, a DNA strand that catalytically triggers the assembly
of two components. Predicting the structure and interactions of a DNA device
requires effective modeling of both the thermodynamics and the kinetics of the
DNA strands within the system. Thermodynamic models can be used to make
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equilibrium predictions for these systems, allowing us to look at questions like
“Is the assembled end-product a well-formed molecular structure, and is it
energetically favorable?”, while kinetics models allow us to predict the non-
equilibrium dynamics, such as “How quickly will the catalytic pathway take
place?” Although the thermodynamics of multiple interacting DNA strands
is a well-studied model [3,4], which allows for both analysis and design of
DNA devices [5,28], previous work on secondary structure kinetics models only
explored the kinetics of how a single strand folds on itself [7,25].

The kinetics of a set of DNA strands can be modeled as a continuous time
Markov process through the state space of all secondary structures. Due to the
exponential size of this state space it is computationally intractable to obtain an
analytic solution for most problem sizes of interest. Thus the primary means of
exploring the kinetics of a DNA system is by simulating trajectories through the
state space and aggregating data over many such trajectories. We present here
the Multistrand kinetics simulator, which extends previous work [7] by using
the multiple strand thermodynamics model [4] (a core component for calculating
transition rates in the kinetics model), adding new terms to the thermodynamics
model to account for stochastic modeling considerations, and by adding new
kinetic moves that allow bimolecular interactions between strands. In Ref. [18],
we prove that this new kinetics and thermodynamics model is consistent with
the prior work on multiple strand thermodynamics models [4].

The Multistrand simulator is based on the Gillespie algorithm [8] for gener-
ating statistically correct trajectories of a stochastic Markov process. We devel-
oped data structures and algorithms that take advantage of local properties of
secondary structures. These algorithms enable the efficient reuse of the basic
objects that form the system, such that only a very small part of the state’s
neighborhood information needs to be recalculated with every step. A key addi-
tion was the implementation of algorithms to handle the new kinetic steps that
occur between different DNA strands, without increasing the time complexity
of the overall simulation. These improvements lead to a reduction in worst case
time complexity of a single step and also lead to additional improvements in the
average case time complexity.

What data does the simulation produce? At the very simplest, the simulation
produces a full kinetic trajectory through the state space—the exact states it
passed through, and the time at which it reached them. A small system might
produce trajectories that pass through hundreds of thousands of states, and that
number increases rapidly as the system gets larger. Going back to our original
question, the type of information a researcher hopes to get out of the data could
be very simple: “How quickly will the catalytic pathway take place?”, with the
implied question of whether it’s worth it to actually purchase the particular DNA
strands composing the catalyst system and perform an experiment, or go back
to the drawing board and redesign the device. One way to acquire that type
of information is to look at the first time in the trajectory where we reached
the “assembly has been catalyzed” state, and record that information for a large
number of simulated trajectories in order to obtain a useful answer. We designed
and implemented new simulation modes that allow the full trajectory data to be



196 J.M. Schaeffer et al.

condensed during generation into only the pieces the user cares about for their
particular question. This analysis tool also required the development of flexible
ways to talk about states that occur in trajectory data; if someone wants data
on when or how the catalyst acted, we have to be able to express that in terms
of the Markov process states which meet that condition.

2 The Model

2.1 System Specification

We are interested in simulating nucleic acid molecules (DNA or RNA) in a sto-
chastic regime; that is to say that we have a discrete number of molecules in a
fixed volume. This regime is found in experimental systems that have a small
volume with a fixed count of each molecule present, such as the interior of a
cell, protocell, or droplet. We can also apply this to experimental systems with
a larger volume (such as a test tube) when the system is well mixed, as we can
either simulate a fixed small volume with small molecular counts and extrapolate
to the larger volume, or we can individually simulate the interactions between
specific molecules and derive rate constants for a coarse-grained chemical reac-
tion network model that can be simulated in the mass-action regime.

To discuss the modeling and simulation of the system, we begin by defining
the components of the system, and what comprises a state of the system within
the simulation.

Strands. Each DNA molecule to be simulated is represented by a strand. Our
system then contains a set of strands Ψ∗, where each strand s ∈ Ψ∗ is defined
by s = (id, label, sequence). A strand’s id uniquely identifies the strand within
the system, while the sequence is the ordered list of nucleotides that compose
the strand. The strand label will usually be ignored, but may be used to make a
distinction between strands with identical sequences. For example, if one strand
were to be labeled with a fluorophore, it would no longer be physically identical
to another with the same sequence but no fluorophore. We define two strands
as being identical if they have the same labels and sequences.

Complex Microstate. A complex is a set of strands connected by base pairing
(secondary structure). We define the state of a complex by c = (ST, π∗, BP ),
called the complex microstate. The components are a nonempty set of strands
ST ⊆ Ψ∗, an ordering π∗ on the strands ST , and a list of base pairings BP =
{(ij ·kl) | base i on strand j is paired to base k on strand l, and j ≤ l, with i < k
if j = l}, where “strand l” refers to the strand occurring in position l in the
ordering π∗. Further, not all base pairings are allowed: following Ref. [4], every
complex must by definition be connected, hairpins must have loop lengths of at
least three, and in this work only non-pseudoknotted secondary structures will
be considered.

System Microstate. A system microstate represents the configuration of the
strands in the volume we are simulating (the “box”). We define a system
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microstate i as a set of complex microstates, such that each strand in the system
is in exactly one complex within the system.

2.2 Energy

The conformation of a nucleic acid strand at equilibrium can be predicted by
a well-studied model, called the nearest neighbor energy model [15–17]. Recent
work has extended this model to cover systems with multiple interacting nucleic
acid strands [4]. The distribution of system microstates at equilibrium is a
Boltzmann distribution, where the probability of observing a microstate i is
given by

Pr(i) =
1

Qkin
∗ e−ΔGbox(i)/RT (1)

where ΔGbox(i) is the free energy of the system microstate i, and is the key
quantity determined by these energy models. Qkin =

∑
i e−ΔGbox(i)/RT is the

partition function of the system, R is the gas constant, and T is the temperature
of the system in Kelvin.

Energy of a System Microstate. To treat the energy of the system microstate
i, we break it down into components. The system consists of one or more com-
plex microstates c, each with their own energy. Additionally, the system has an
entropy that accounts for the possible spatial arrangements of complexes within
the “box”.

Let us first consider the entropy term. Our reference state, which by def-
inition will have zero energy, is chosen to be the system microstate in which
all strands are in separate complexes and have no base pairs formed. There-
fore, our entropy term is in terms of the reduction of available positional states
caused by having strands join together. Assuming that the solution is sufficiently
dilute that boundary and crowding effects can be ignored (i.e. each complex’s
center of mass can be anywhere within the simulated volume V ), then each
complex contributes RT log V

V0
to the energy of the system, where V0 is the

reference volume1 chosen to be consistent with existing thermodynamic mod-
els. If the system contains Ltot strands within a total of C complexes, and we
define ΔGvolume = RT log V

V0
, then the contribution to the energy of the system

microstate i from the translational entropy of the box, relative to the reference
state, is simply (Ltot − C) ∗ ΔGvolume.

And thus in terms of C,Ltot,ΔGvolume and ΔG(c) (the energy of complex
microstate c, defined in the next section), we define ΔGbox(i), the energy of the
system microstate i, as follows:

1 We calculate V0 as the volume in which we would have exactly one molecule at a
standard concentration of 1 mol/L: V0 = 1/(Na ∗ 1 mol/L), where Na is Avogadro’s
number, and thus V0 is in liters. Similarly, we may wish to calculate V based on the
concentration u in mol/L of a single strand such that the volume V is chosen such
that exactly one molecule is present in that volume. In this case we have V = 1

u∗Na

and the relative number of states in the box is then V
V0

= Na
u∗Na

= 1
u
.
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ΔGbox(i) = (Ltot − C) ∗ ΔGvolume +
∑

c ∈ i

ΔG(c) (2)

The energy formulas derived here, suitable for our stochastic model, differ
from those in [4] in two main ways: the lack of “symmetry terms”, and the
addition of the ΔGvolume term.

Energy of a Complex Microstate. We previously defined a complex
microstate in terms of the list of base pairings present within it. However, the
well-studied models are based upon nearest neighbor interactions between the
nucleic acid bases. These interactions divide the secondary structure of the sys-
tem into local components which we refer to as loops, shown in Fig. 1.

IV.
Multiloop

V. Exterior
Loop

I.
StackIII. Bulge

Loop

II. Interior
Loop

VI. Hairpin

Fig. 1. Secondary structure divided into loops.

These loops can be broken down into different categories, and parameter
tables and formulas for each category have been determined from experimental
data [17]. Each loop l has an energy, ΔG(l), which can be retrieved from the
appropriate parameter table for its category. Each complex also has an energy
contribution associated with the entropic initiation cost [1] (e.g., rotational) of
bringing two strands together, ΔGassoc, whose total contribution is proportional
to the number of strands L within the complex, as follows: (L − 1) ∗ ΔGassoc.

The energy of a complex microstate c is then the sum of these two types
of contributions. We can also divide any free energy ΔG into the enthalpic and
entropic components, ΔH and ΔS related by ΔG = ΔH+T ∗ΔS. For a complex
microstate, each loop can have both enthalpic and entropic components, but
ΔGassoc is usually assumed to be purely entropic [16]. This becomes important
when determining the kinetic rates, in Sect. 2.3.

We use ΔG(c) to refer to the energy of a complex microstate to be consistent
with the nomenclature in [4], where ΔG(c) refers to the energy of a complex
when all strands within it are considered unique (as is the case in our system),
and ΔG(c) is the energy of the complex, without assuming that all strands
are unique (and thus it must account for rotational symmetries). In summary,
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the standard free energy of a complex microstate c, containing L(c) = |ST (c)|
strands, is

ΔG(c) =

⎛

⎝
∑

loop l ∈c

ΔG(l)

⎞

⎠ + (L(c) − 1)ΔGassoc

which can now be used in combination with Eq. 2 to compute ΔGbox(i).
It can also be convenient to write the system energy as a single sum over

the complexes, rather than separating the complex microstate energies and the
overall translational entropy terms. Using Ltot =

∑
c∈i L(c), and C =

∑
c∈i 1,

we obtain

ΔGbox(i) =
∑

c∈i

(
ΔG(c) + (L(c) − 1) ∗ ΔGvolume

) def
=

∑

c∈i

ΔG∗(c)

where

ΔG∗(c) = ΔG(c) + (L(c) − 1) ∗ ΔGvolume

=

⎛

⎝
∑

loop l∈c

ΔG(l)

⎞

⎠+ (L(c) − 1) ∗ (ΔGassoc + ΔGvolume)

is the component of the total system energy that is associated with complex
microstate c.

In Ref. [18], we have compared the Multistrand stochastic energy model to the
NUPACK mass action model, showing that despite the lack of symmetry terms
and the addition of ΔGvolume terms they nonetheless make identical equilibrium
predictions.

2.3 Kinetics

Basics. Thermodynamic predictions have only limited use for some systems
of interest, if the key information to be gathered is the reaction rates and not
the equilibrium states. Many systems have well-defined ending states that can
be found by thermodynamic prediction, but predicting whether it will reach
the end state in a reasonable amount of time requires modeling the kinetics.
Kinetic analysis can also help uncover poor sequence designs, such as those with
alternate reactions leading to the same states, or kinetic traps which prevent an
intended reaction from occurring quickly.

The kinetics are modeled as a continuous time Markov process over secondary
structure space. System microstates i, j are considered adjacent if they differ by
a single base pair (Fig. 2), and we choose the transition rates kij (the transition
from state i to state j) and kji such that they obey detailed balance:

kij

kji
= e− ΔGbox(j)−ΔGbox(i)

RT (3)



200 J.M. Schaeffer et al.

state j: state i:

state q:

k
ji

k
ij

k
qj
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jq

Fig. 2. System microstates i, q adjacent to current state j, with many others not shown.

This property ensures that given sufficient time we will arrive at the same equi-
librium state distribution as the thermodynamic prediction (i.e., the Boltzmann
distribution on system microstates, Eq. 1) but it does not fully define the kinet-
ics as only the ratio kij

kji
is constrained. We discuss how to choose these transition

rates in the following sections, but regardless of this choice we can still determine
how the next state is chosen and the time at which that transition occurs.

Given that we are currently in state i, the next state m in a simulated
trajectory is chosen randomly among the adjacent states j, weighted by the rate
of transition to each.

Pr(m) =
kim

Σjkij
(4)

Similarly, the time taken to transition to the next state is chosen randomly
from an exponential distribution with rate parameter λ, where λ is the total rate
out of the current state, Σjkij .

Pr(Δt) = λ exp(−λΔt) (5)

We will now classify transitions into two exclusive types: those that change
the number of complexes present in the system, called bimolecular transitions,
and those where changes are within a single complex, called unimolecular tran-
sitions. Note that this terminology is slightly different from the standard use of
bimolecular reactions and unimolecular reactions in chemical reaction network
theory: a bimolecular transition could be either a bimolecular reaction (two
complexes coming together) or the corresponding unimolecular reaction (one
complex dissociating into two).

Unimolecular Transitions. Because unimolecular transitions involve only a
single complex, it is natural to define these transitions in terms of the com-
plex microstate which changed, rather than the full system microstate. Like
Fig. 2 implies, we define a complex microstate d as being adjacent to a complex
microstate c if it differs by exactly one base pair. We call a transition from c
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to d that adds a base pair a creation move, and a transition from c to d that
removes a base pair a deletion move. The exclusion of pseudoknotted structures
is not inherent in this definition of adjacent states, but rather arises from our
disallowing pseudoknotted complex microstates.

The formal Markov chain for Multistrand simulations consists of transitions
between system microstates i and j that differ by exactly one base pair, thus
any unimolecular transition involves exactly one complex. Note that if i to j is
a creation move, j to i must be a deletion move, and vice versa. Similarly, if
there is no transition from i to j, there cannot be a transition from j to i, which
implies that every unimolecular move in this system is reversible.

Bimolecular Transitions. A bimolecular transition from system microstate i
to system microstate j is one where the single base pair difference between them
leads to a differing number of complexes within each system microstate. This
differing number of complexes could be due to a base pair joining two complexes
in i to form a single complex in j, which we will call a join move. Conversely, the
removal of this base pair from i could cause one complex in i to break into two
complexes within j, which we will call a break move. Note that if i to j is a join
move, then j to i must be a break move, and vice versa. As we saw before, this
also implies that every bimolecular move is reversible. Again, while arbitrary
bimolecular transitions are not inherently prevented from forming pseudoknots
in this model, we implicitly prevent them by using only complex microstates
that are not pseudoknotted.

Transition Rates. A key part of our model is the choice of rate method: the way
we set the rates of a pair of reactions so that they obey detailed balance. There are
several rate methods found in the literature [10,11,31] which have been used for
kinetics models for single-stranded nucleic acids [7,31] with various energy models.
We have implemented two of these simple rate methods which were previously used
in single base pair elementary step kinetics models for single stranded systems.

In order to maintain consistency with known thermodynamic models, each
pair of kij and kji must satisfy detailed balance and thus their ratio is deter-
mined by the thermodynamic model, but in principle each pair could be indepen-
dently scaled by some arbitrary prefactor, perhaps chosen to optimize agreement
with experimental results on nucleic acid kinetics. However, since the number of
microstates is exponential, this leads to far more model parameters (the prefac-
tors) than is warranted by available experimental data. For the time being, we
limit ourselves to using only two scaling factors: kuni for use with unimolecular
transitions, and kbi for bimolecular transitions.

Unimolecular Rate Models. The first rate model we will examine is the
Kawasaki method [10]. This model has the property that both “downhill” (ener-
getically favorable) and uphill transitions scale directly with the steepness of
their slopes.

kij = kuni ∗ e− ΔGbox(j)−ΔGbox(i)
2RT (6)

kji = kuni ∗ e− ΔGbox(i)−ΔGbox(j)
2RT (7)
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The second rate model under consideration is the Metropolis method [11]. In
this model, all downhill moves occur at the same fixed rate, and only the uphill
moves scale with the slope. This means that the maximum rate for any move
is bounded, and in fact all downhill moves occur at this rate. This is in direct
contrast to the Kawasaki method, where there is no bound on the maximum
rate. For microstates i and j such that ΔGbox(i) ≥ ΔGbox(j):

kij = 1 ∗ kuni (8)

kji = kuni ∗ e− ΔGbox(i)−ΔGbox(j)
RT (9)

Note that the value of kuni that best fits experimental data is likely to be
different for both models. Additionally, note that full calculation of ΔGbox(i) and
ΔGbox(j) is not necessary in order to calculate the rates, because microstates
i and j differ in exactly one pair of complex microstates (c ∈ i, d ∈ j) and by
exactly three loop terms within those complex microstates.

Bimolecular Rate Model. When dealing with moves that join or break com-
plexes, we must consider the choice of how to assign rates for each transition in
a new light. In the particular situation of the join move, where two molecules
in a stochastic regime collide and form a base pair, this rate is expected to be
modeled by stochastic chemical kinetics.

Stochastic chemical kinetics theory [8] tells us that there should be a rate
constant k such that the propensity of a particular bimolecular reaction between
two species X and Y should be k ∗ #X ∗ #Y/V , where #X and #Y are the
number of copies of X and Y in the volume V . Since our simulation considers
each strand to be unique, #X = #Y = 1, and thus we see the propensity
should scale as 1/V . Recalling that ΔGvolume = RT log V

V0
= RT log 1

u , we see
that we can obtain the 1/V scaling by letting the join rate be proportional to
e−ΔGvolume/RT .

Thus we arrive at the following rate method, where the choice of the scalar
term kbi can be found by comparison to experiments measuring the hybridiza-
tion rate of oligonucleotides [23], and where without loss of generality the tran-
sition from microstate i to microstate j is a join move while the transition from
microstate j to microstate i is a break move:

kij = kbi ∗ e
−ΔGvolume

RT = kbi ∗ V0

V
= kbi ∗ u (10)

kji = kbi ∗ e− ΔGbox(i)−ΔGbox(j)+ΔGvolume
RT

def
= kbi ∗ e− ΔGloops(i,j)−ΔGassoc

RT (11)

The latter simplification derives from the observation that, as in the bimolecular
case, the system microstates i and j differ by exactly three loop terms in their
complex microstates. However, they also differ in the total number of complexes
within each system microstate, such that if i to j is a join move, ΔGbox(i) −
ΔGbox(j) = ΔGloops(i, j)−ΔGvolume −ΔGassoc, where ΔGloops(i, j) represents
the energy differences between i and j due to the three differing loop terms in
the complex microstates.
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This formulation is convenient for simulation, as the join rates are then inde-
pendent of the resulting secondary structure. Note that an implication is that
due to the rate being determined for every possible first base pair between
two complexes, the overall rate for two complexes to bind (by a single base
pair) is proportional roughly to the square of the number of exposed nucleotides
(although possibly only a linear subset is likely to zipper up reliably), in addition
to the 1

V dependence noted earlier.

3 The Simulator: Multistrand

Energy and kinetics models similar to these can been solved analytically; how-
ever, the standard master equation methods [24] scale with the size of the sys-
tem’s state space. For our DNA secondary structure state space, the size gets
exponentially large as the strand length increases, so these methods become
computationally prohibitive. One alternate method we can use is stochastic sim-
ulation [8], which has previously been done for single-stranded DNA and RNA
folding (the Kinfold simulator [7]). Our stochastic simulation refines these meth-
ods for our particular energetics and kinetics models, which extends the simula-
tor to handle systems with multiple strands and takes advantage of the localized
energy model for DNA and RNA.

3.1 Data Structures

There are two main pieces that go into this new stochastic simulator. The first
piece is the multiple data structures needed for the simulation: the loop graph,
which represents the complex microstates contained within a system microstate
(Fig. 3D); the moves, which represent transitions in our kinetics model (the single
base pair changes in our structure that are the basic step in the Markov process);
and the move tree, the container for moves that lets us efficiently store and
organize them (Fig. 4).

Energy Model. Since the basic step for calculating the rate of a move involves
the computation of a state’s energy, we must be able to handle the energy model
parameter set in a manner that simplifies this computation. Previous kinetic sim-
ulations (Kinfold) rely on the energy model we have described, though without
the extension to multiple strand systems.

The energy model parameter set and calculations are implemented in a simple
modular data structure that allows for both the energy computations at a local
scale as we have previously mentioned, but also as a flexible subunit that can be
extended to handle energy model parameter sets from different sources.

The Current State: Loop Structure. A complex microstate can be stored
in many different ways, as shown in Fig. 3. While each of these has different
advantages, we are going to focus on the loop representation, which allows the
energy to be computed and stored in local components. One drawback is that
the loop graph cannot represent pseudoknotted structures without introducing
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(1,1)
(1,3)
(1,4)
(2,4)
(2,5)
(2,7)
(2,8)
(2,10)
(2,11)
(2,12)
(2,13)

(2,31)
(2,2)
(2,1)
(2,29)
(2,28)
(2,26)
(2,25)
(2,24)
(2,23)
(2,22)
(2,21)

-
-
-
-
-
-
-
-
-
-
-

(.((_)).((.((.((((.......)))))).)).).

Fig. 3. Example secondary structure, with different representations: (A) Original loop
diagram representation. (B) Base pair list representation. Each base pairing is repre-
sented by the indices of the bases involved. (C) Dot-paren representation, also called
the flat representation. Each base is represented by either a period, representing an
unpaired base, or by a parenthesis, representing a pairing with the base that has the
(balanced) matching parenthesis. An underscore represents a break between multiple
strands. (D) Loop graph representation. Each loop in the secondary structure is a single
node in the graph, which contains the sequence information within the loop.

a loop type for pseudoknots (for which we may not know how to calculate the
energy), and making the loop graph cyclic; however, since this work is primarily
concerned with non-pseudoknotted structures this is only a minor point.

We use the loop graph representation for each complex within a system
microstate, and organize those with a simple list. This gives us the advantage
that the energy can be computed for each individual node in the graph, and since
each move only affects either one or two nodes in the graph we will only have
to recompute the energy for the affected nodes when performing a transition.
While providing useful output of the current state then requires processing of
the graph, it is a constant time operation if we store a flat representation which
gets updated incrementally as each move is performed by the simulator.

Reachable States: Moves. When dealing with a flat representation or base
pair list for a current state, we can simply store an available move as the indices
of the bases involved in the move, as well as the rate at which the transition
should occur. This approach is very straightforward to implement (as was done
in the original Kinfold), and we can store all of the moves for the current state
in a single global structure such as a list. However, when our current state is
represented as a loop graph this simple representation can work, but does not
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A.

B.

1, 1

1,1

1,2

1,3

2,1

2,2
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3,1
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1 2
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1,1
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1,3 2,1 2,2
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3,3
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1

Fig. 4. (A) Creation moves (blue line) and deletion moves (red highlight) are repre-
sented here by rectangles. Either type of move is associated with a particular loop, and
has indices to designate which bases within the loop are affected. (B) All possible moves
which affect the interior loop in the center of the structure. These are then arranged
into a tree (green area), which can be used to quickly choose a move. (C) Each loop
in the loop graph then has a tree of moves that affect it, and we can arrange these
into another tree (black boxes), each node of which is associated with a particular loop
(dashed line) and thus a tree of moves (blue line). This resulting tree then contains all
the moves available in the complex (Color figure online).

contain enough information to efficiently identify the loops affected by the move.
Thus we elect to add enough complexity to how we store the moves so that we
can quickly identify the affected nodes in our loop graph, which allows us to
quickly identify the loops for which we need to recalculate the available moves.

We let each move contain a reference to the loop(s) it affects (Fig. 4A), as well
as an index to the bases within the loop, such that we can uniquely identify the
structural change that should be performed if this move is chosen. This reference
allows us to quickly find the affected loop(s) once a move is chosen. We then
collect all the moves which affect a particular loop and store them in a container
associated with the loop (Fig. 4B). This allows us to quickly access all the moves
associated with a loop whose structure is being modified by the current move.
We should note that since deletion moves by nature affect the two loops adjacent
to the base pair being deleted, they must necessarily show up in the available
moves for either loop. This is handled by including a copy of the deletion move
in each loop’s moves, and halving the rate at which each occurs.

Finally, since this method of move storage is not a global structure, we add
a final layer of complexity on top, so that we can easily access all the moves
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available from the current state without needing to traverse the loop graph.
This is as simple as storing each loop’s move container in a larger structure such
as a list or a tree, which represents the entire complex’s available moves as shown
in Fig. 4C.

3.2 Algorithms

The second main piece of the simulator is the algorithms that control the indi-
vidual steps of the simulator. The algorithm implementing the Markov process
simulation closely follows the Gillespie algorithm [8] in structure:

1. Initialization: Generate the initial loop graph representing the input state,
and compute the possible transitions.

2. Stochastic Step: Generate random numbers to determine the next transition,
as well as the time interval elapsed before the transition occurs.

3. Update: Change the current loop graph to reflect the chosen move. Recompute
the available transitions from the new state. Update the current time using
the time interval in the previous step.

4. Check Stopping Conditions: check if we are at some predetermined stopping
condition (such as a maximum amount of simulated time) and stop if it is
met. Otherwise, go back to step 2.

The striking difference between this structure and the Gillespie algorithm is
the necessity of recomputing the possible transitions from the current state at
every step, and the complexity of that recalculation. Since we are dealing with
an exponential state space we have no hope of storing all possible transitions
between any possible pair of states, and instead must look at the transitions that
occur only around the current state.

4 Analysis Case Studies

We have now presented the models and algorithms that form the continuous time
Markov process simulator. Now we move on to discuss the most important part
of the simulator from a user’s perspective: the huge volume of data produced by
the simulation, and methods for processing that data into useful information for
analyzing the simulated system.

How much data are we talking about here? We would expect an average of
O(N) moves per time unit simulated, where N is the total length over all strands
in the system. This doesn’t tell us much about the actual amount of data, only
that we expect it to not change drastically for different size input systems. In
practice this amount can be quite large, even for simple systems: for a simple 25
base hairpin sequence, it takes ∼4,000,000 Markov steps to simulate 1 s of real
time. For an even larger system, such as a four-way branch migration system
with 108 total bases, simulating 1 s of real time takes ∼14,000,000 Markov steps.

What can we do with all the data produced by the simulator? A key insight
is that most of this Markov step data is not needed if the measurement of
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. . .
Start State Branch Migration Disassociation

Fig. 5. Three-way branch migration system. The toehold region is in green and has
sequence GTGGGT, and the branch migration region is black and has sequence
ACCGCACCACGTGGGTGTCG. Both sequences are for the substrate strand.

interest is for a particular pathway, such as that shown in Fig. 5. In this system,
one quantity of interest is how quickly the system reaches the completed branch
migration state from the starting state. To measure this quantity we do not need
to examine every Markov step as it is being made, but rather need to be able to
record when we have reached the stop state. A stop state is typically defined by a
macrostate, a collection of system microstates which meet some common criteria.
For example, in the three way branch migration system, we might say that all
system microstates which have the incumbent strand in a separate complex is
the stop state of interest, as this corresponds to all the possible ways in which
we could have had the incumbent strand dissociated at the end of the branch
migration. For more on the definition of macrostates, see Ref. [18].

We now define the first passage time mode of simulation within Multistrand:
given a starting system microstate and a set of stop states, it performs the
simulation algorithm as given in Sect. 3.2 and records the time at which it reaches
any of the stop states, as well as which one was reached. This produces a single
piece of data for each trajectory simulated, which is a rather striking difference
when compared to the raw number of microstates observed in a trajectory.

Let us now look at a simple three-way branch migration system in Fig. 5 and
how it is to be simulated using first passage time mode. We start the system
as shown, and use two different stop states: the complete stop condition where
the incumbent strand has dissociated (as shown in the figure), and the failed
stop condition where the invading strand has dissociated without completing
the branch migration. Both of these are done using a macrostate describing a
strand dissociation, which makes it very efficient to check the stop states. Note
that we include the invading strand dissociating as a stop state so that if it
occurs (which should be very rarely for long toehold lengths), we can find out
easily without waiting until the maximum simulation time or until the strands
reassociate and complete the branch migration.

The following table (Table 1) shows five trajectories’ worth of data from first
passage time mode on the example system. Note that we have included a third
piece of data for each trajectory, which is the pseudorandom number generator
seed used to simulate that trajectory. This allows us to produce the exact same
trajectory again using a different simulation mode, stop states or other output
conditions. For example, we might wish to run the fifth trajectory in the table
again using trajectory mode, to see why it took longer than the others, or run
the first trajectory to see what kinetic pathway it took to reach the failed stop
condition.
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Table 1. First passage time data for the example three-way branch migration system.
Stop conditions are either “complete”, indicating the branch migration completed suc-
cessfully, or “failed”, indicating the strands fell apart before the branch migration could
complete.

Random number seed Completion time Stop condition

0x790e400d 3.7 ∗ 10−3 Failed

0x38188213 3.8 ∗ 10−3 Complete

0x47607ebf 2.1 ∗ 10−3 Complete

0x02efe7fa 2.8 ∗ 10−3 Complete

0x7c590233 6.7 ∗ 10−3 Complete

Let’s now look at a much larger data set for first passage time mode. Here we
again use the three-way branch migration system shown in Fig. 5, but with a ten
base toehold region with sequence GTGGGTAGGT on the substrate strand in
order to minimize the number of trajectories that reach the failed stop condition.
We run 1000 trajectories, using a maximum simulation time of 1s, though no
trajectory actually used that much as we shall shortly see.

Instead of listing all the trajectories in a table, we graph the first passage
time data for the complete stop condition in two different ways: first (Fig. 6a)
we make a histogram of the distribution of first passage times for the data set,
and second (Fig. 6b) we graph the percentage of trajectories in our sample that
have reached the complete stop condition as a function of the simulation time.

While there are many ways to analyze these figures, we note two particular
observations. Firstly, the histogram of the first passage time distribution looks
suspiciously like an exponential distribution, possibly with a short delay. This is
not always typical, but the shape of this histogram can be very helpful in inferring

(a) Histogram of first passage times (b) Percent completion by simulation time

Fig. 6. First passage time data for the three-way branch migration system with ten
base toehold. 1000 trajectories were simulated and all of them ended with the complete
stop condition.
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how we might wish to model our system based on the simulation data; e.g., for
this system, we might decide that this three-way branch migration process is
roughly exponential (with some fitted rate parameter) and so we could model it
as a one-step unimolecular process.

The second observation is that while the percentage completion graph looks
very similar to an experimental fluorescence microscopy curve, they should NOT
be assumed to be directly comparable. The main pitfall is found when comparing
fluorescence curves from systems where the reactions are bimolecular: in these
the concentration of the relevant molecules are changing over time, but in our
stochastic simulation the bimolecular steps are at a fixed volume/concentration
(reflected in the ΔGvolume energy term) and data is aggregated over many tra-
jectories.

5 Conclusions

The Multistrand simulator provides a powerful platform for exploring the behav-
iors of molecular machines created using dynamic DNA nanotechnology. In addi-
tion to the first passage time mode described above, alternative simulation modes
have been implemented to provide differing levels of detail for analysis [18]: tra-
jectory mode provides the full elementary step trajectory, which could be used to
make a movie; transition mode collects statistics on when the simulation enters
and exits specified macrostates; and first step mode runs simulations starting
from an initial collision, which provides an efficient method for analyzing reac-
tions in dilute solutions. The core simulation algorithms are implemented in
C++, while a flexible user interface is available from within Python. The Mul-
tistrand package can be downloaded from http://www.multistrand.org.

At this time, Multistrand is best used to explore semi-quantitative sequence-
dependent phenomena, such as assessing relative sequence design quality,
because kinetic predictions are not expected to be in quantitative agreement
with experimental measurements. While the secondary structure energy land-
scape used by Multistrand agrees with established thermodynamic models such
as NUPACK [4], the simple methods used to set the relative rates of different
types of elementary moves (Metropolis and Kawasaki dynamics) are not flexible
enough to simultaneously accurately match the widely varying rates of funda-
mental processes such as zipping, fraying, breathing, three-way branch migration,
and four-way branch migration. This is an important area for future work.
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