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ABSTRACT. We present a method of transforming an extract-based DNA com-
putation that is error-prone into one that is relatively error-free. These im-
provements in error rates are achieved without the supposition of any improve-
ments in the reliability of the underlying laboratory techniques. We assume
that only two types of errors are possible: a DNA strand may be incorrectly
processed or it may be lost entirely. We show how to deal with each of these
errors individually and then analyze the tradeoff when both must be optimized
simultaneously.

1. Introduction

Despite the significant theoretical achievements made in the field of DNA com-
puting, no physical DNA computer has yet been used to successfully solve any real
problem. For researchers trying to make DNA computation a physical reality, a cen-
tral problem is that of error correction since the obvious implementations of DNA
algorithms using current lab techniques all produce errors at rates unacceptable for
useful computation. In particular, two major sources of errors are misclassification
errors caused by faulty extracts and strand loss.

However, the unreliability of the underlying biotechnology does not mean that
DNA computing must remain a purely theoretical exercise. Even without improve-
ments in lab techniques, research has shown that error rates can be significantly
reduced solely by algorithmic methods [14, 15]. In other words, an algorithm for
a DNA computer can be mapped to an equivalent one that is comparatively error-
free, admittedly at the cost of more time and space. This paper presents such a
transformation for extract-based DNA algorithms and an analysis of the tradeoff
between the reduction of errors it produces and the extra space and time it requires.

2. Model of Computation

Although many models of DNA computation have been proposed, the canonical
model remains the extract model of Adleman [1], as generalized by Lipton [2]. In this
model we start with a test tube of DNA strands encoding every possible solution
to the problem and we make sure that the sequences are chosen such that the
strands will be well-behaved in the laboratory [16, 17, 18, 19]. The goal of the
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computation then is to separate the true solutions (the “good strands”) from the
non-solutions (the “bad strands”).

The algorithm uses only three primitives: extract, combine and detect. An
extract step takes as input a test tube T and a subsequence S, and produces as
output a yes-tube containing the strands in T containing the subsequence S and a
no-tube containing the other strands. A combine step takes two tubes and produces
a single tube containing the contents of both. A detect step is used to check if a
test tube contains any DNA strands and, if so, to determine the sequence of one
(randomly chosen) strand. We will consider only computations where detect is used
only at the end of the computation to check for the existence of a solution. Note
that since the number of combine steps done is bounded by the number of extracts
performed, it is reasonable to use the number of extract steps as our measure of
time complexity. If we assume the algorithm divides all strands into a final yes-tube
and a final no-tube, then ideally, the yes-tube would contain all the good strands
and the no-tube all the bad strands. In a real computation, however, the yes-tube
may contain both types of strands, so we must choose a small number of strands
from the yes-tube, sequence them and verify their correctness, in effect repeating
the detect step several times. By the definition of NP, this verification can be
carried out efficiently. There is also a fourth primitive called the duplicate step, in
which PCR is used to make a single duplicate copy of each strand of DNA in the
system. This primitive is not used in the conventional extract-based model but will
be introduced later as a way to correct errors in the computation.

Formally, an algorithm in the extract model can be represented as a directed
acyclic graph with a source and two sinks. Each node represents a test tube; the
source node represents the original tube containing all possible solutions and the
two sinks represent the final yes- and no-tubes. All non-sink nodes are labeled with
some symbol ¢ and have two outgoing edges labeled o and 7. S(o) is the sequence
which we use to perform an extract on the node. If more than one edge enter a
node, we implicitly do a combine step. We shall assume that at the end of the
computation, each strand is in one of the two sink nodes.

Figure 1 shows how we can solve 3-SAT with an extract-based DNA computer;
specifically, it illustrates the step that extracts putative solutions that satisfy the
clause (x =0 or y = 1 or z = 1). Starting at the node at the top-left, all strands
not containing “x=1" are extracted and put in the yes-tube at the bottom of the
figure. Next, from the remaining strands, all those containing “y=1" are extracted
and put in the yes-tube, and similarly for the last extract. At the end of this
computation, the yes-tube contains all strands satisfying the clause. For 3-SAT
computations we can immediately discard all other strands, but in general both the
yes- and no-tube strands may be used later on, so we assume that these remaining
strands are implicitly kept in a no-tube until the end of the computation. For the
next clause, we can do a similar computation but starting with the yes-tube of
the previous clause. Clearly, this algorithm requires 3 extract steps and 1 combine
step for each clause plus a constant amount of time for the detect step. This
gives a running time complexity linear in the size of the formula compared to the
exponential time required by the best known algorithm for the classical Turing-
machine model. However, an exponential number of DNA strands must be used.
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FIGURE 1. Solving 3-SAT with an extract-based DNA computer.
Subroutine for “... & (z=0o0ry=1o0rz=1) & ...”

3. Error model

From the previous section, it is clear that the error rate of the computation is
dominated by the error rates of the extract and combine steps. Furthermore, since
an algorithm can have at most one combine step per extract, errors that occur in
a combine step (loss of DNA strands) will be attributed to the preceding extract.
Therefore, from now on, we will assume that errors in processing are caused only by
extract steps and we will treat an algorithm as simply a sequence of E extracts. In
general the number of extracts performed on each strand may be different. However,
if Fis the maximum number of extracts performed on any strand, then we can think
of E as an upper bound on the number of extracts performed on any strand. We can
then transform any algorithm A in which each strand goes through < E extracts to
an equivalent algorithm A’ in which each strand goes through exactly E extracts
simply by adding redundant steps. A’ is then a layered graph, with E layers. The
error rates derived for A’ are an upper bound on the error rates for A so from now
on we will assume that all strands undergo the same number of extracts.

In this paper, we will consider only two sources of errors in a DNA computation.
First, as stated above, each extract step may simply not work correctly, with the
result that some strands containing the sequence are classified as not containing it
while some strands not containing the sequence are classified as containing it. These
errors are called false negatives and false positives respectively. In practice, an
implementation of the extract step may have false negative and false positive rates
that are several orders of magnitude different. Also, the error rate may be different
depending on which DNA sequence is used for the extract since, for example, some
sequences bind better to separation beads than others. However, for the sake of
simplifying our calculations, we will assume in this paper that both of these error
rates are in fact equal. Let the probability of a strand being correctly processed by
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a single extract step be p, and the probability that the strand is correctly processed
by the entire algorithm be P.yprect- For an indication of the overall error rate of a
computation where no error correction is used, consider that molecular biologists
are generally comfortable with handling around 2%° DNA strands at a time. This
allows us to reasonably handle an instance of 3-SAT with 50 variables and 200
clauses since this would require 2%° strands. To do this we need 3 extracts per clause
for a total of 600 extracts, so even with p = 0.99, P.orrect is only (0.99)6%0 = 0.002.

The second type of error we consider is caused by a strand being lost during the
course of the computation. DNA strands, being physical objects and fragile ones
at that, may be lost by getting stuck in the apparatus, by cleavage or cross-linking
reactions or by any number of other possible means. Let ¢ be the probability of a
strand surviving one step of processing, and let k = log, % The number of strands
will be halved after every k steps; that is, ¢* = .5. In an extreme case one may
have to remove a considerable fraction of the strands after each step for debugging
and k£ = 1, but we expect that in general £k > 5 can be achieved. We denote
the probability of at least one copy of (perhaps initially many copies of) a strand
surviving to the end of the computation as Psyryivai-

4. Related Work

Although previous research has been done on improving Peorrect and Psyryival
individually, to our knowledge no one has taken the next step of studying them
together. Intuitively, we need to do more computational steps to improve the rate
of correctly processing the strands, but doing so will only increase the chances for a
strand to be lost in the computation. If we wish to study the overall rate of error,
it is clearly important to study the tradeoff between the two error rates.

In his paper on DHPP ! Adleman [1] briefly mentioned two methods for dealing
with errors. For false positives, he suggested that the extract could simply be
repeated on the yes-tube, thus weeding out any bad strands that were wrongly
misclassified. However, if the no-tube must be used later, repeated separation is
useful only if the false negative rate is satisfactory already. So far, this has been
shown only for separation techniques that incur substantial strand loss [20, 21,
22, 23]. For false negatives — which in his case amounted to strand loss — Adleman
suggested using PCR to amplify good (and possibly bad) strands. This is essentially
the approach we develop quantitatively in this paper.

Karp et al [14] first introduced the notion of a compound extract as a way
to deal with processing errors from the extract step. The idea is that one can
repeat a faulty extract operation many times to simulate a reliable one. We present
essentially the same algorithm but with a more concrete analysis of the construction.
Karp claimed that if § is the desired error rate of the compound extract and e = 1—p
the error rate of the simple extract, then we can achieve the desired error rate by
using an extra O(log? §) steps, O(log, §) of which can be performed in parallel. Our
analysis gives a complete proof of the upper bound and shows that the constant
factors are in fact not large. Later, Roweis et al [24, 15] presented essentially the
same algorithm as Karp but with a different analysis.

IDirected Hamiltonian Path Problem. Adleman’s algorithm is sometimes referred to as an
algorithm for the Travelling Salesman Problem (TSP) although strictly speaking, TSP involves
edge-weights and DHPP does not.
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Although no algorithm for improving Psyyivar as defined here has been studied,
Boneh et al [25] proposed and analyzed the use of PCR to reduce errors in decreas-
ing volume computations, a class of DNA algorithms that includes the standard
DHPP and 3-SAT algorithms but unfortunately not algorithms for formula-SAT,
circuit-SAT or breaking DES 2. In decreasing volume computations, once a strand
is known to not contain a solution, it is discarded, so that the total volume of DNA
in the system is decreasing, hopefully at a constant rate. In this case, if bad strands
are removed at a faster rate than good strands are lost, then PCR can be used to
amplify the good (and bad) strands, making it unlikely for all copies of a good
strand to be lost. We adapt Boneh’s algorithm to the general problem, where all
strands are retained, and we analyze how it affects the probability of a strand sur-
viving the computation. Note that our analysis is not the same as Boneh’s because
in his case, a bad strand has a much higher probability of being discarded than a
good strand, while in our case, both types of strands have equal probabilities of
becoming lost.

Although, Karp, Roweis and Boneh are our primary models, it is perhaps worth
mentioning a few other error-correcting methods. Amos et al [26] proposed an al-
ternative implementation of the extract step which used a restriction enzyme to
digest away unwanted strands instead of extracting out the good ones. Ouyang et
al [10] has successfully implemented this model for a 6-variable SAT problem, and
Faulhammer et al [13] performed a 9-variable computation using RNA strands and
RNAse H as a “universal RNA restriction enzyme.” From an algorithmic stand-
point the bead-separation and digestion implementations of extract are equivalent
if duplicate is included as a primitive step. An extract step that separates strands
into a yes-tube and a no-tube can simulate a digest step by simply discarding the
no-tube. Similarly, assuming we are using an encoding (such as Lipton’s) where
each strand contains either S(o) or S(@) but not both, we can simulate an extract
on sequence S by using a duplicate step to make two copies of the tube, and then
digesting the S(o) in one to get the no-tube and digesting S(7) in the other to get
the yes-tube. Although the restriction enzyme digestion approach was proposed to
take advantage of the high specificity and efficiency of restriction enzymes, the fact
that duplication steps are necessary and that strands may be lost in incidental lab
procedures complicates the error analysis. The results in this paper should provide
a framework for rigorous analysis of errors in digestion-based DNA computing.

Finally, it is possible for DNA strands to interact with each other in undesired
ways and even alter each other’s sequences during the duplicate step [13]. This
paper cannot address these problems; however, the problems may be minimized
by experimental protocol modifications and by good choices of coding sequences
[16, 17, 18, 19]. Good sequences and encodings may also improve the error rates
for extracts since some sequences are more likely to be properly extracted than
others depending on their biochemical properties [25].

2The problem is to break the Data Encryption Standard (DES) using a chosen plain-text
attack, which means that an adversary can obtain a (plain-text, cipher-text) pair where the plain-
text is chosen by the adversary.
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FI1GURE 2. The compound extract subroutine, for n = 3.

5. Probability of a strand being correctly processed

A compound extract is a subroutine designed to be used in place of a simple
extract, which we have been referring to up to now simply as an eztract. A com-
pound extract works by repeating the same simple extract many times as outlined in
Figure 2, which shows a compound extract on “x=1". Each node represents a test
tube and each pair of arrows leaving a node represents a simple extract on “x=1".
The question marks have been added to suggest that the simple extract step is
not 100% accurate. A compound extract is organized in n phases: in the above
example there are three phases each corresponding to a level in the lattice. After
each phase, all the strands from the original tube are distributed among the tubes
in that level: the jt* tube from the left starting at 0 contains strands encoding
“x=1" which were extracted correctly exactly j times, as well as strands encoding
“x=0" which were extracted incorrectly exactly j times. After the n'* phase, we
take the right-most tubes and combine them into a single yes-tube, and take the
left-most tubes and combine them into a single no-tube. If n is even, and hence
after the last phase of extracts there are n + 1 tubes, then the central tube may
be combined arbitrarily with the yes- or no-tube. The greatest number of tubes
needed at any time is n and in principle we can perform all the extracts in a given
phase in parallel®. Therefore, we measure the time complexity for the compound
extract by the number of phases, n.

3In fact, we can reduce the number of simple extracts in the compound by a factor of 2

without degrading performance. Observe that the fate of strands leaving the central 3§ x %

diamond is at that point determined, so all extracts outside the diamond may be eliminated, and
all strands may be routed directly to the yes-tube and the no-tube. However, the discussion is

simplified by considering the strictly layer phases as described above.
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Strands processed according to the Figure 2 perform a random walk. The
strands containing the sequence “x=1" have a bias toward the right and those with
the sequence “x=0" have a bias (which we assume for this derivation is equal to
the rightward bias) towards the left. Therefore the probability of being correctly
processed by this method is given by the tail of a binomial distribution. The
analysis that follows looks complicated but is in fact straightforward. For a full
treatment, see Feller [27] Chapter 6.2-3 for the binomial distribution and Chapter
2.9 for Stirling’s formula.

We want to find an upper bound on the probability of error due to a compound
extract. Define P, to be this probability and define P, =1 — P,. Let

b(h;n,p) = <Z>Ph(1 —-p)" "

be the probability that n Bernoulli trials with probabilities p for success and (1 — p)
for failure result in h successes and n — h failures. The probability of error of the
compound extract is given by the sum of the terms of the Binomial distribution
from 0 to the central term, "7*1 or % (in which case we over estimate either false
negatives or false positives). We assume that p is greater than 0.5. Note that the
error bound for even n = 2m, P, < Y }*  b(h;2m, p), is strictly greater than the
error for odd n =2m+1, P, = ;" , b(h; 2m + 1, p), by observing that the strands
in the latter tubes are a subset of those that reach the former. Consequently, for
mathematical convenience we develop the bound for even n only. To get an upper
bound on this quantity, we find an upper bound on the largest, central term, and
then bound the rest of the tail with a geometric series.

To get an upper bound on b(%;n,p), we use the conventional upper and lower

bounds for n! given by Stirling’s formula:
V2rn nte et/ (120t < nt < \/27n nle et/ (127,

Since we assume that n is even,

n n! n/2
=, - 1 —p)/2,
b(5im,p) /2P (1-p)
Plugging the bounds for Stirling’s formula in this equation and simplifying (the
derivation is tedious but entirely straightforward and hence omitted), we get

n 1
b(Zn,p) < ——ntlel/(120)=2/(6nt1);n/2(1 _ pyn/2
(2 n,p) < o e pv3( )

(1) < 2npn/2(1 _p)n/2
= [4p(1 —p)"/>.

Now to find a good geometric series bound on the tail, consider the ratio between
consecutive terms in the tail. If we can bound this ratio with some 3, then the
probability of an error occuring is

P. = b(5in,p) +b(5 — 1in,p) + ...+ b(0; m, )
(2) <b(Gim P+ B+ B + .+ A7)

b(gim, ) {1 = A"/} {1 - B}.
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Typical values and estimates for P,
p=0.90 p=0.95 »=0.99
S < S < S <
n=6|16x10"7 14x107' [22x107® 21x107% | 20x10"° 1.9x107*

n=10]16x10"% 18x1072|64x10"% 74x107*| 24x10"% 29x10°7
n=20|72x10"% 11x107*|1.1x10"% 18x1077|1.7x10"'% 28x10~%4

TABLE 1

For h < % and p > .5, the ratio between consecutive terms is

b(h — 1;n,p) h(1 —p) (n/2)(1 - p)
3 = < 2(1 — p).
®) Winp) = htDp S m2+10s < 20 P)
Thus we get our upper bound on the ratio of consecutive terms, 8 = 2(1 —p). From
(1), (2) and (3) we can get an upper bound on the probability of error as follows:

1— gn/2H+
1-8
< [4p(1 - p)"?/(2p — 1).
And from this we see immediately that for p > 2/3,
(4) P, <3[p(1—p)™*  and P, > 1 - 3[p(1 - p)]"/%.

P, < b(g;n,p)

So we have shown that using the compound extract method with n phases
gives us a compound extract with an error rate decreasing exponentially in n, at
the cost of requiring n-fold more time and n-fold greater parallelism. Table 1 shows
values for P, given typical values of n and p, as estimated numerically from the tail
distribution and from the analytical bound (4).

Our analysis thus far shows the error rate achievable for a given number of
phases, n, of the compound extract. However, for a given target error rate, §, we
would like to find the minimum 7 that gives us this error rate. Introducing e = 1—p,
we can write (4) as

P, < 3[4pe]™/2.

Using n > 2log,,, d/3 ensures that P, < J. When pis close to unity, our choice for n
is roughly 2log,, 6/3 = O(log, ¢). This is the result Karp presented; our derivation
shows, in addition, that the constant factors inherent in the big-O notation are
small.

6. Probability of survival

The algorithm is simply to apply one cycle of PCR to all the tubes each time the
number of DNA strands falls by half. We assume that exactly one duplicate copy
of each strand of DNA is produced. Since we are assuming that strand loss occurs
at a constant rate, we need to apply PCR once every k steps for some constant
k. If k is not an integer, then the PCR should be applied enough times to keep
the volume of DNA constant on the average over the course of the computation.
For example, if £ = 4.2, PCR should be applied after the 4th, 8th, 12th, 16th and
21st steps. For our analysis, however, we will simply take the floor function of k
— equivalent to decreasing the stepwise survival probability q. The true error rate
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will be better than our estimate. Therefore from now on, we will assume that k is
an integer.

We will follow a single DNA strand through the computation and use a branch-
ing process to analyze P, the probability that at least one copy of that strand
survives the computation. For more on branching processes, see Feller Chapter
12.3-4. Briefly, a branching process describes particles which are able to reproduce
(for example, atoms in a nuclear reaction or, more to the point, DNA strands in
a DNA computation). For our algorithm we take a generation to be the number
of extract steps required to make the number of strands drop in half, which means
that at the end of each generation we do a PCR step. An algorithm with E layers
has | E/k] full generations.

Let Z,, be the number of strands in the m** generation. Then starting with
a single strand as generation zero, let P, ; be the probability that Z,, = i. Py, ;
characterizes the loss of strands and the action of PCR. For example, if PCR
perfectly duplicates each strand exactly once, Pio = 0.5,P; 2 = 0.5 and P;; =0
for ¢ # 0,2. That is, each strand has probability 0.5 of being lost during any
one generation (in which case it produces 0 strands in the next generation, i.e.
Py = 0.5) and it has probability 0.5 of surviving (in which case it is duplicated
and produces 2 strands in the next generation, i.e. P; o = 0.5).

We now introduce the notion of a generating function, which is simply a way
of expressing a discrete probability distribution in algebraic form. The generating
function, G,,,(s), of a probabilty distribution is defined to be

Gm(s) = Z Pm,isi

i>0

where the dummy variable, s, is simply a place holder without any meaning of its
OwIl.

Suppose there were ¢ strands on the first generation. Then the number of
strands in the m!”* generation can be expressed as the sum of ¢+ random variables,
X1, -+, Xy, each representing the number of descendents produced by a particular
strand in the first generation. By assumption, X; all have the same probability
distribution and therefore the same generating function. This generating function
is just Gm—1(s) because X; are the result of similar branching processes that started
at generation one instead of generation zero. Now the probability distribution for
the mt? generation is given by

(5)  Prob(Zm =j)=Y_ Prob(Z =t)Prob(Xy + ...+ X; = j|Z1 = t).
t>0

For a fixed t, the distribution of Z,, = X; + --- + X; is the convolution of the
distributions for Xi,...,X;. Since all X; have the same distribution G,,_1(s),
the generating function of Z,, = X1 + --- + X; is [Gr_1(8)]. We can see this
by observing that when we multiply two generating functions, A(s) = 3" a;s* and
B(s) = Y_b;s?, term-by-term and collect terms with equal powers of s, the co-
efficient of s" is agb, + a1b,_1 + ... + a,by, which is exactly the 7" term in the
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convolution of A(s) and B(s). Therefore G, (s) is given by
Gn(s) = ZProb(Zm =j)s’
320
=" " Prob(Zy =t)Prob(Xy + ... + X; = j|Zy = t)s’
§>0 >0

=Y PiyY Prob(Xi+ ..+ X, = j|lZ = t)s?
t>0 >0

= Z Pl,t[Gm—l(S)]t-
£>0
But the right hand side of this equation is just the generating function for G;
substituting G,,—1(s) for s. Therefore
(7) Gm(s) = G1(Gm-1(9))-
Recall that G, (0) = P 0 = Prob(Z, = 0) is the probability of the strand being
extinct in the m** generation. By (7) we have
Ppo=Gi(Pn-10)-

Given a particular distribution G (s), this polynomial recurrance can be solved to
find how quickly (or slowly) Py, 0 approaches 1.

Here we find bounds for the example discussed above, where PCR is assumed
to perfectly duplicate each surviving strand: Py o = P;» = 0.5, and all other values
are zero. Therefore,

Gi(s) = Z Py st = 0.5+ 0.55
i>0
and the recurrence is

Pro=G1(Pn-1,0) =0.5+0.5P; .

If we take @, to be the probability of a strand surviving (i.e. Qm =1 — Pp0) we
get

(8) Qm=05-051-Qn-1)>=Qm-1—05Q2,_,.
Now all that remains is to find a lower bound on the recurrence (8). We will show
by induction that @Q,, > 1/m for m > 4. For the base case, we compute the first
few values of @, and 1/m by hand: @; = .5 and Q4 > 1/4.
For the inductive step, suppose Q.,—1 > 1/(m — 1). Then
Qmt = 0.5Q%,_y > 1/(m —1) = 0.5[1/(m — 1)]?

if the function f(Q) = @ — 0.5Q? is strictly increasing. Taking the derivative of
f(z), we have f'(Q) = 1 — Q which is positive if @ < 1. Since the @,,’s are all
probabilities, they are all strictly less than 1, so f is strictly increasing on this
interval. This gives us

Qm =Qm-1—-0.5Q7,
>1/(m—1) —0.5[1/(m — 1)]?
> (m? —2m +1)/[m(m — 1)?
=1/m

9)

] for m > 2



ERROR CORRECTION IN DNA COMPUTING: MISCLASSIFICATION AND STRAND LOSS59

which proves that Q,, > 1/m for m > 4. Similar arguments show that #H <

Qm < mi_w for all m; thus our bound is reasonably tight. For convenience, we use
Qm > ﬁ for m > 7. By our assumption that one generation consists of k extract
steps (the final generation may have fewer), we have m = [nE/k] < nE/k + 1 for
the entire computation, so the probability of a strand surviving to the end of the
computation with at least one copy remaining is (for m > 7)

1 k

m—1 > nE’

This suggests that, if we were to start with many copies of each sequence, the
probability that at least one of the original strands will have descendents in the

final tubes will be reasonably high. We show this in the next section.

(10) P, >

7. Combining survival and correctness probabilities

To complete the computation, we select a small number of strands from the
final yes-tube at random, sequence them and verify them for correctness. Our goal
is to guarantee with high probability that there is at least one good strand in the
final yes-tube and that the ratio of good strands to bad strands in the yes-tube is
high. For concreteness, we show that we can guarantee a ratio of at least 1:1, in
which case we should only need to sequence a small number of strands to find a
solution. Our terms of merit, therefore, are P.,.rect, the probability that a strand
that survives the entire computation was processed correctly by each compound
extract, Psyrvival, the probability that at least one copy of a given sequence survives
the entire computation, and (Np.q), the expected number of bad strands in the final
yes-tube.

Unfortunately, the expected number of bad strands in the yes-tube is highly
dependent on the particular algorithm. For example, for arbitrary Boolean formu-
las, it is possible that a single extract error can make a bad strand end up in the
final yes-tube. On the other hand, for a practical problem like breaking DES, many
extract errors typically would have to be made before a bad strand will arrive in
the final yes-tube. To resolve this issue, we will follow Boneh et al [25] in requiring
that each DNA algorithm A come with information |M;|, where M; is the set of
input sequences that could end up in the yes-tube if it were to suffer i steps of
incorrect processing (in the worst-case). By definition, |Mp| is the total number
of good sequences and we will assume the worst case that |My| = 1. Note that a
single strand can occur in many M;.

Our criterion can now be stated as follows: given an algorithm A (and hence
E and |M;|) and error rates p and ¢ (and hence k) for correctness and survival, we
would like to choose n, the number of phases in the compound extract, and R, the
number of redundant copies of each sequence in the original input tube, such that:

1. Each strand is probably correctly processed: P,oppect > 0.95.

2. Each original sequence probably has at least one representative in the final

tubes: Psyryivar > 0.95.
3. There is probably no more than one bad strand in the yes-tube:
PT‘Ob(Nbad < ].) > 0.95.

We can now find conditions on n and R that guarantee that each clause be

satisfied. First, we note that

Poorrect = (P)P =(1-=P.)P >0.95= P, <1—0.95"F.
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Thus, the bound (4) on P, guarantees that #1 is satisfied if
n > 2log 4, (1 — 0.95"/7)/3].

The threshold value of n depends on p and E but not on ¢, R, or |M;].
Next, we use (1 — 1) < 1 for z > 0 to obtain from (10) that,

Poyrvivar =1 = (1 - PS)R >1- e Pkt >1-— e*Rk/En‘

Thus, #2 is satisfied if
3En

R> %

The threshold value of R depends on ¢ and E but not on p or |M;|, and it is linear
in n. Criteria #1 and #2 delineate a region of possible values with a corner at
Nomin, Rmzn

Finally, note that if Ny,q > 2 at least 1/20%" of the time, then the expected
value (Npgq) > 1/10. Thus, (Npea) < 1/10 would imply that #3 is satisfied.
Furthermore, we can get an upper bound on (Np.4) by presuming that any ¢ errors
routes the strands in M; into the yes-tube.

(Nbaa) < b(1; B, P)|M1|R + b(2; E, P.)|M2|R + - - - + W(E; E, P )| ME|R
<Z i e| Z|R_’7(n7R)'

i>1
Thus, #3 is satisfied if y(n, R) < 1/10; this final constraint imposes an additional
boundary in the space of possible n and R. The shape of this boundary depends the
values of |M;|, which can take on almost arbitrary values, but nonetheless certain
properties can be predicted. Suppose ¥(Nmin, Rmin) > 1/10. Note that simply
increasing n decreases all P! exponentially, while the concomitant increase in R is
only additive. Therefore, the desired values for n and R are easily found.
Consider the worst case for a b-bit satisfiability problem, where all 2° — 1 bad
strands are in M;. Equation (11) reduces to

(Nbaa) < EP.M;R < 9E*[4€]"/22n/k

and therefore, n = —2log, (9E%2%/k/1000) satisfies #3 so long as n < 100. In
particular, for the 50-variable, 200 clause 3-SAT problem discussed earlier, where
p = 0.99, no strand loss, and no error correction resulted in P.ypreee = 0.002, we
can now state that even with ¢ = 0.90 (thus & = 6), n = 31 results in P, =
2.6 x 10724 (satisfying #1 with overkill); R = 9300 ensures #2 is satisfied; and
altogether, (Npoq) < EP.|M;|R = 0.016 < 1/10, satisfying #3. If each strand is
2000 bases long, then the total population of 2°R strands weighs a substantial but
not outrageous 12 grams.

In contrast, consider the plaintext-ciphertext attack on DES considered by
Boneh et al [3] and Adleman et al [28], for which b = 56. Surprisingly, for reasonable
assumptions the average number of bad strands in the yes-tube is simply (Npeq) =
R /256, independent of the error rate [28]. For E = 6719, p = 0.99, and ¢ = 0.99
(thus & = 69), we can satisfy #1 using n = 7, for which P, = 3.4 x 10~7 and
Poorrect > 0.997; R = 2048 satisfies #2 with Psyrpivar > 0.95; and altogether,
(Nbaa) &~ R/256 = 8, so sequencing 26 strands from the yes-tube should ensure
that the good strand is sequenced and identified. If each strand is 10,000 bases
long, then the total population of 2°R strands weighs 810 grams — substantially
better than the 23 Earth masses estimated in [28] for pg = 0.99.
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8. Discussion

The essential point of this investigation is that strand loss and misclassification
errors do not present insurmountable obstacles to DNA-based computation. Even
in the presence of what would be unthinkable error rates for electronic computers
— say 1% per-step error rates — DNA computation can succeed, at the cost of only
a modest increase in the number of extract steps and the volume of DNA being
handled. 1% error rates are within reach for current biotechnology. Of course, the
best solution, if it can be done without affecting the time or cost of each step, would
be to improve the fundamental biotechnology of the extract and combine steps
directly. Even with such advances, however, the overall error rates required for
problems like SAT are unlikely to be achieved without error-correcting algorithms
such as the ones discussed here.

Several of the assumptions we used in our derivations, chosen to simplify the
mathematics, can be relaxed. One is our assumption that PCR is error-free. It
is clear that PCR can make errors by simply copying a strand incorrectly or by
failing to make a duplicate copy of a particular strand at all. To account for this,
our branching process analysis can be extended to any distribution of values for
the P;’s. We can also adapt our algorithm to account for strand loss from PCR by
integrating this loss rate into the probability of loss due to extract steps.

The assumption that the combine step is error free can be weakened to the
assumption that each combine step has a constant probability of strand loss. Then,
just as we can add the strand loss rates of PCR and the extract step, we can also
add to their sum the error rate from the combine steps. The assumption that the
rate of false-negatives and false-positives are equal is also not necessary and the
exact same analysis will hold for this case; Karp et al [14] and Adleman [29] have
shown a simpler variety of compound extract whose false-postive and false-negative
rates are both roughly equal to the minimum of the original rates.

However, some non-idealities are not so easy to rectify using our approach.
A good example would be systematic bias due to sequence-dependent biophysical
or biochemical factors — for example, certain DNA sequences may extract with
unusually low or high rates, may be amplified particularly reliably or unreliably,
or may be lost due to hydrolysis at a faster or slower rate. It is a significant open
question whether such systematic bias can be corrected for or avoided, for example,
by appropriate strand design and experimental protocols.

In conclusion we have shown that it is theoretically possible to reduce errors
due to false negative, false positives, and lost strands to tolerable levels in any
extract-based DNA computation with only small extra time and space factors. Al-
though these techniques should be useful immediately for larger problems than have
been demonstrated to date, it is clear that more significant applications of DNA
computing will require substantial improvements in the underlying biotechnology.
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