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ORGANIZING CENTERS IN A CELLULAR EXCITABLE MEDIUMY
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Excitable media provide much of the subject-matter of physiology, especially of electrophysiology. We simulate excitability
in a cubical three-dimensional grid of discrete cells. Topologically distinct organizing centers for self-sustaining rhythmic
activity (at period 4) arise from suitable initial conditions. Two are shown: the scroll ring and the linked pair of twisted scroll
rings. The first has already been observed in a chemically excitable reagent and possibly in heart muscle; the second, and others
of a predicted “periodic table of organizing centers”, remain to be observed outside computers.

1. Introduction

The essence of excitability is responsiveness to a
threshold-transgressing stimulus from an adjacent
excited cell. The response consists of becoming
excited in the same way, then, during an interval
of exhaustion, recovering the former excitability.
In such a medium excitation is contagious and
propagates as a pulse. In sheets of excitable
medium (cortex of the brain, retina, smooth muscle,
atrial muscle, to name only a few) the pulse is a
wavefront. In solid blocks of such media (left
ventricular muscle, possibly certain parts of the
brain) the wavefronts can presumably be two-
dimensional surfaces. Is their geometry essentially
the same as in wave-propagating media familiar to

+This paper was presented at a Symposium on Nonlinear
Oscillations in Physiology, Oxford University, 14 September
1984, and printed in the corresponding book of extended
abstracts, ed. Derek Linkens.

physicists, viz. concentric sphere-like “bags”
without any edge unless only on the boundary of
the medium? It would be of interest to conduct
simulations of three-dimensional excitable media
to learn what geometrically distinctive varieties of
wave might inhabit them, given appropriate initial
conditions and boundary conditions. The prospect
of encountering qualitatively new kinds of wave
should entice anyone intrigued by the qualitatively
distinctive peculiarities of excitable media, such as
their susceptibility to fibrillation and a host of
simpler arrhythmias.- :
Three-dimensional integration of the pertinent
stiff partial differential equations remains prohibi-
tively expensive, even after decades of fast ex-
ponential decline in the unit cost of computation.
However, the first such have already been reported
[1-3]. As such undertakings come within reach, it
is important to be ready with potentially interest-
ing initial conditions. Toward this end we simulate
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an array of 4 by B by C cubical cells. Each cell
may be in one of three states, Q, E, or T. It is
normally “quiescent” (Q) and “excitable”: if one
of its six neighbors is excited, then in the next
moment, it too becomes excited (E). In the mo-
ment following it is “tired”  (T) and therefore
cannot be re-excited. In the next moment it is
again quiescent and therefore excitable again. An
exception to these rules occurs along the
boundaries of the array, in that a cell on a face,
edge, or corner has only five, four, or three neigh-
bors. This is equivalent to saying in the language
of differential equations that we use Dirichlet
boundary conditions: the cell just beyond each
face is imagined to be held quiescent. The usual
alternative to Dirichlet (fixed-state) boundaries is
Neumann (no-flux) boundaries: the array is imag-
ined to abut an appropriately mirror-imaged array
along each face. In our discrete-state caricature of
excitability either rule has the same effect.

Initial conditions consist of an arrangement of
E’s and T’s in a sea of Q’s, emplaced by an
automatic algorithm or by keyboard entry via an
editor subprogram. Then the array is repeatedly
scanned, updating each cell’s state according to
the foregoing rules. The array settles into a
period-four repeat after a number of updates no
greater than the longest array dimension. This
“repeat” consists only of quiescence in one-dimen-
sional simulations (4 = B = 1) with these absorb-
ing boundary conditions. In two dimensions (A4 =
1, like quadrille paper or window-screen), uniform
quiescence may also result, but another frequent
result is some arrangement of period-four rotating
spirals with one or more arms. The period, in this
case, reflects the perimeter of the smallest closed
ring in this discrete medium. In a2 medium with
more states intervening between excitation and
restored excitability, the shortest closed path of
circulation would have at least that perimeter (and
period).

Even without digital assistance one can under-
stand these phenomena immediately by simply
following the rules with pencil and eraser on
quadrille paper. It proves interesting to start from

quiescent initial conditions surrounding a bilayer
of active cells, excited on the front side, tired on
the rear side, reaching from an edge into the
interior of the rectangle array. The dangling end-
point of this plane wave will quickly evolve into
the pivot and source of a spiral wave. An even
simpler initial condition, which develops a -mir-
ror image pair of adjacent spirals, is uniform qui-
escence (E) punctuated by a single pair of
non-quiescent cells: one excited, and one tired
neighbor.

Such media and their spiral waves have been
thoroughly explored [4-8]. Though obviously
quantized in an extreme way, they behave very
much like waves in analogous continuous excitable
media, such as the Belousov—-Zhabotinsky chem-
ical reagent [9-11], various idealizations for-
mulated as partial differential equations [12 and
refs. in 13], slime mold [14, 15], thin layers of heart
muscle [16-19], cerebral cortex [20, 21], and the
retina [22).

Our objective was to determine how far this
discrete-state, discrete-space simulation mimicks
the anticipated behavior of continuous excitable
media in three dimensions, as a preliminary to
undertaking calculations from continuous differen-
tial equations. Anticipations for the three-dimen-
sional case include a great variety of topologically
distinct sources, all of the same period except in
the regions of extreme curvature. All are general-
izations of the two-dimensional spiral. The sim-
plest one (see below) has been observed in vitro
[23, 24], in vivo [25], and in numero [1]. The next
simplest source has only been described mathe-
matically and animated by computer graphics on
videotape.

In this report we demonstrate it dynamically in
three dimensions for the first time.

First, as a “control experiment”’, we demon-
strate the simplest scroll ring. In a continuum this
is a surface of revolution which can be visualized
as a spiral swung about an axle. The source of the
spiral in each plane radial to the axle is a point; in

-the surface of revolution that point becomes a

ring, the edge of a wave rolled up around it. This
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Fig. 1. A 20 X 20 X 20 cube of idealized excitable medium harbors a scroll ring, shown here in 4 planar cross-sections at successive
values of ¥, and four perpendicular cross-sections at successive values of Z as indicated. The scroll’s singularity is a 10 X 9
rectangular ring slightly tilted out of the XY plane at Z =12 + — 1. Excited (E) cells are black, tired (T) cells are grey, and quiescent
cells (Q) are blank. Notice in cross-section Y =11 the pair of mirror-image spirals radiating outward to left and right, and inward to
center; in perpendicular section Z = 13 these waves are seen as concentric rings propagating outward and inward. The repeat period is

4.

source ring (or, in more elaborate cases, an
arrangement of mutually linked knotted rings) is
called the organizing center for the spatially and
temporally periodic activity that radiates from it.
Fig. 1 shows planar sections of the simplest
organizing center, a solitary ring in a 20 by 20 by
20 cube. This scroll ring was initiated with a slight
tilt relative to the grain of the array in order to
expose its cross-sections in a more generic way.
This is particularly important for the serial sec-
tions at fixed Y. These sections expose concentric
inward and outward ring-shaped waves. They are
separated by expanding crescents where the sec-
tion plane grazes one edge of the scroll, ie. a
vertically-travelling broadside has just penetrated
the section plane. In fig. 2 a line-drawing outlines
waves photographed [24] on fixed and stained
serial sections of Belousov-Zhabotinsky reagent.
Fig. 3 similarly outlines (as a time sequence rather
than serial sections at fixed time) the activation
front emerging through the surface in a piece of

heart muscle, recorded by an array of microelec-
trodes [25]. All six pictures are about 1 cm in
diameter.

In all three cases the initial conditions were
similar: a wavefront abruptly terminating along a
circular edge. In the discrete simulation it was a
five by six disk of E cells backed up by a layer of T
cells; its perimeter became the organizing center.
In the chemical reagent, stimulation at a point
produced a hemispherical wave whose circular edge
was then abutted against another block of quies-
cent medium to create the ring source. In the heart
muscle, the hemisphere was ruptured by encoun-
tering a block of heart muscle artificially made
inexcitable; when excitability returned, activity be-
gan to issue from the block at a period comparable
with that of two-dimensional rotating waves in
heart muscle.

Several years ago it was predicted that scroll
rings might exist in greater variety, distinguishable
by topological indices [26]. In particular, it was



112 A.T. Winfree et al. / Organizing centers in a cellular excitable medium

Fig. 2. A piece of rabbit heart muscle appears to harbor a
slightly tilted scroll ring, in the interpretation of Medvinsky
et al. [25]: waves radiate as concentric inward and outward
rings from a circular locus beneath the surface of the muscle.
The outer circular wave is about 1 cm diameter. As the inner
wave erupts as a broadside into the exposed surface, it is caught
at 103, 113, and 143 ms after first stimulation. Their repeat
period (106 ms) is close to that of spiral waves in this medium
(82 ms).

©

Fig. 3. Waves from a slightly tilted scroll ring are caught in
serial sections across a “pancake” of the Belousov—Zhabotinsky
excitable medium. They radiate inward and outward as in figs.
1 and 2. The outer ring is 0.8 mm diameter (from ref. 24).

X=23

L=121]

Fig. 4. Comparable to fig. 1, but this time the singularity is a
pair of linked rings, each radiating a twisted scroll ring at
period 4. At large X or Z the section planes miss the rings
altogether. Sections Z=7 and Z =14 cut both rings (each
twice) to expose mirror-image spirals. Section X = 6 cuts only
one ring; X = 18 cuts the other.

argued that the least complicated of these more -
elaborate organizing centers in excitable media
would be a linked pair of scroll rings. These con-
jectures were given more substance in a sequence
of papers proceeding from geometry and labora-
tory arrangements for chemical implementation
[13] to topology [27-30] and to computer graphics
(but not dynamical simulations) [31, 32]. It was
discovered that scroll rings could link if they were
also twisted in a topological sense. But no one had
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Fig. 5. Top left: initial conditions for a scroll ring consist of a disk of excited (E) cells overlaying (not visible here) a disk of tired (T)
cells. This is a piece of wavefront, moving toward the observer where E is exposed, or away where T is exposed. Top Middle: a pair of
twisted scroll rings is started from a similar bilayer, but shaped as a twisted band so it has two edges, mutually linked. Top right:
initial conditions for a knotted scroll ring are fashioned from two disks of bilayer, joined together by three half-twisted bands. These
initial conditions each consist a single surface bounded only by the singular ring(s). Bottom: as in top, but the single bilayer surface is
bounded by the singular ring(s) and by the boundary surface of the three-dimensional medium. Arrows orient the wave edges: walking
along the edge in the indicated direction you see the wavefront rotating clockwise.

yet computed linked scroll rings to compare with
anticipations by topology and computer graphics.

Fig. 4 presents such a simulation in the format
of fig. 1, shown at a moment long after initial
conditions in a 23 by 23 by 23 cube. Initial condi-
tions consisted, again, of a sheet of wavefront with
edges exposed to the surrounding quiescence; those
edges became the rotation axes of scroll rings. In
this case there were two circular edges and they
were linked: the sheet of wavefront was a cylin-
drical band containing one full twist as shown in
fig. 5 (middle column). These edges curled up into
counter-rotating scrolls. If a section plane cuts a
source ring, it cuts twice, showing spirals of oppo-
site hand as in fig. 1. Some sections in fig. 4 cut no
source rings and therefore intercept sheets of
wavefront along closed rings; others cut one ring,
and so include a pair of opposite spirals; and still
others cut both rings, and so show four spirals.
This congestion could be alleviated by spacing the
initial wavefront edges further apart in a bigger
array, ideally of cells packed hexagonally like
stacked cannon-balls. But they are far enough
apart here to function as independent spiral sources
with period four. The integer (unit) twist imposed
on the initial band of wavefront persists as the

unit twist of each scroll ring and links them to-
gether. This was verified by reconstructing the
three dimensional wave from transparencies of its
three orthogonal sets of serial sections.

In this discrete medium, initial conditions for all
the foreseen organizing centers can be contrived
quite simply as a sheet of wavefront (a bilayer of T
and E cells) containing appropriate half-twisted
bands. Fig. 5 (top) shows in this format suitable
initial conditions for the plain scroll ring, the
linked twisted pair of scroll rings (of which there is
a mirror-image isomer not shown), and for a
trefoil-knotted solitary scroll ring (which also has a
mirror-image isomer). Although these wave sources
function in complete independence of boundaries,
like free particles, it is sometimes convenient to
start them from a sheet of wavefront that initially
touches the boundaries as in fig. 5 (bottom).

These sheets connected by half-twisted bands
correspond in the continvum case to the Seifert
surface [27-30, 33] bounded by any set of rings.
Any Seifert surface satisfies the “exclusion princi-
ple” [27-29, 33] which specifies the unique twist
associated with the wavefront near any one of its
bounding rings. (We thank Professor Herbert
Seifert for confirming our derivation of this fact
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and for the tidier proof contained in the appendix.)
The sheet of E cells corresponds to a local maxi-
mum of excitation (e.g. HBrO, in the Belousov—
Zhabotinsky reagent), and the sheet of T cells
behind it corresponds to a local maximum of
inexcitability (e.g. Br™ ions in that chemical ana-
log). By implementing such initial conditions for
numerical solution of the equations of cardiac
electrophysiology or reaction—diffusion equations,
it should be possible to determine the stability of
diverse organizing centers, or observe their modes
of decay into simpler objects. In the case of fig. 1,
for example, it appears that in continuous media
the ring typically contracts, ultimately to nothing
[1, 11, 24, 34]. What becomes of linked or knotted
rings? Possible transmutation pathways have been
outlined theoretically [29], but up to now the only
such transmutation observed is fission of a single
ring into two [34]. Much remains o be discovered.

Such discoveries may illuminate modes of
arrhythmia in heart muscle that lead to sudden
cardiac death [35]. They may provide hints as to
the patterns of stimulation which initiate such
lethal waves, and suggest means less damaging
than high-current electroconvulsion of the ventricle
for terminating them.
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Appendix A

A property of Seifert surfaces

by Professor Herbert SEIFERT
with comments by A.T. WINFREE

Notation

Given a set of R closed oriented (and possibly
knotted) rings {K;, K,,..., Ky} embedded in
three-dimensional Euclidean space E*, denote by
L, the (integer) mutual linkage of ring K through
ring K/ traced arbitrarily near to ring K along a
compact (nonsingular) oriented surface /' whose
boundary consists of the R oriented closed rings."
In [27-29, 33] this F was constructed by the
Seifert algorithm to span the collection of rings. It
is intended to represent a chemical wavefront, half
of a closed surface of uniform chemical concentra-
tion. By D, denote a (singular) disk with boundary
K. This construct has no direct chemical interpre-
tation. So F together with the set of disks { D,} is
a closed singular surface, here denoted by G.

We next consider the intersection number of a
curve K/ with F and with G. The intersection
number I(C, S) of an oriented curve C with an
oriented surface S is the integer number of times
the curve penetrates the surface with same orienta-
tion, minus the number of penetrations with op-
posite orientation. Thus the intersection number of
any closed curve with any closed surface is 0 in E3,

Argument

For each i, I(G, K/)= 0. But G is the sum of F
and all the D, so:
R
0=1(G,K;)=I1(F,K;)+ ¥ 1(D,, K;).
j=1
The first term on the right is 0, since each K’ lies
on F and can be approximated by a curve that
does not meet (non-singular) F at all. The second
term (the sum) is the sum of all L,: I(D, K/)=
I(D;, K,;) is the linkage of K, with K, the.
boundary of D,.

R
Inshort, ). L, =0 for each i.
ji=1

¥T. Poston suggested this simplification of our usual defini-
tion [27-29, 33], which distinguished the case i =}.
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This is the property remarked on in the text,
deduced from physical considerations as an “ex-
clusion principle” delimiting the diversity of chem-
ically realizable “organizing centers” [27-29, 33].
This appendix shows that the exclusion principle,
while classifying geometrically consistent organiz-
ing centers and assigning quantum numbers L,; to
each, has little physical content. Physical princi-
ples may further delimit the possibilities by identi-
fying long-term instabilities and modes of decay in
some (or all) of these solutions.
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